如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使BD=DC,連接AC,AE,DE.

求證:∠E=∠C.

見解析

解析證明 連接OD,因?yàn)锽D=DC,O為AB的中點(diǎn),

所以O(shè)D∥AC,于是∠ODB=∠C.
因?yàn)镺B=OD,所以∠ODB=∠B于是∠B=∠C.
因?yàn)辄c(diǎn)A,E,B,D都在圓O上,且D,E為圓O上位于AB異側(cè)的兩點(diǎn),所以∠E和∠B為同弧所對(duì)的圓周角,
故∠E=∠B.所以∠E=∠C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是圓的直徑,延長(zhǎng)線上的一點(diǎn),是圓的割線,過點(diǎn)的垂線,交直線于點(diǎn),交直線于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.

(1)求證:四點(diǎn)共圓;(2)若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,CD為Rt△ABC斜邊AB邊上的中線,CE⊥CD,CE=,連接DE交BC于點(diǎn)F,AC=4,BC=3.求證:

(1)△ABC∽△EDC;
(2)DF=EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC是直角三角形,∠ACB=90°,CD⊥AB于D,E是AC的中點(diǎn),ED的延長(zhǎng)線與CB的延長(zhǎng)線交于點(diǎn)F.

求證:FD2=FB·FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

試說明矩形的四個(gè)頂點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知AD是△ABC的內(nèi)角平分線,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,梯形ABCD內(nèi)接于⊙O,ADBC,過點(diǎn)C作⊙O的切線,交BD的延長(zhǎng)線于點(diǎn)P,交AD的延長(zhǎng)線于點(diǎn)E.

(1)求證:AB2DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,為圓的切線,為切點(diǎn),的角平分線與和圓分別交于點(diǎn)

(1)求證   (2)求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知切⊙于點(diǎn)E,割線PBA交⊙于A、B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C、D.

求證:(Ⅰ);   (Ⅱ).

查看答案和解析>>

同步練習(xí)冊(cè)答案