【題目】如圖所示,在四棱錐中,底面,,,, , ,,為的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值
【答案】(1)證明見解析;(2)
【解析】
(1)根據直角三角形和等比三角形的性質,證得,再利用線面平行的判定定理,即可證得平面.
(2)由(1)以點為原點,以,,分別為軸,軸,軸建立如圖的空間直角坐標系,求得平面的一個法向量,利用向量的夾角公式,即可求解.
(1)在中,因為,,,
所以,,
在中,因為,,,
由余弦定理得,
所以,所以,則是直角三角形,
又因為為的中點,所以,
又因為,所以是等邊三角形,
所以,所以,
又因為平面,平面,
所以平面.
(2)由(1)可知,以點為原點,以,,分別為軸,軸,軸建立如圖的空間直角坐標系,
則,,,,
則,,,
設為平面的一個法向量,
則即設,則,,所以,
所以,
所以直線與平面所成角的正弦值為.
科目:高中數學 來源: 題型:
【題目】將函數的圖象向左平移個單位長度,再向上平移1個單位長度,得到函數的圖象,則函數具有性質__________.(填入所有正確性質的序號)
①最大值為,圖象關于直線對稱;
②圖象關于軸對稱;
③最小正周期為;
④圖象關于點對稱;
⑤在上單調遞減
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中正確的是( )
A.命題“若,則”的逆命題為真命題
B.若為假命題,則均為假命題
C.若為假命題,則為真命題
D.命題“若兩個平面向量滿足,則不共線”的否命題是真命題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若滿足,則稱為函數的一階不動點,若滿足,則稱為函數的二階不動點,若滿足,且,則稱為函數的二階周期點.
(1)設.
①當時,求函數的二階不動點,并判斷它是否是函數數的二階周期點;
②已知函數存在二階周期點,求k的值;
(2)若對任意實數b,函數都存在二階周期點,求實數c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】撫州不僅有著深厚的歷史積淀與豐富的民俗文化,更有著許多旅游景點.每年來撫州參觀旅游的人數不勝數.其中,名人園與夢島被稱為撫州的兩張名片,為合理配置旅游資源,現對已游覽名人園景點的游客進行隨機問卷調查.若不去夢島記1分,若繼續(xù)去夢島記2分.每位游客去夢島的概率均為,且游客之間的選擇意愿相互獨立.
(1)從游客中隨機抽取3人,記總得分為隨機變量,求的分布列與數學期望;
(2)若從游客中隨機抽取人,記總分恰為分的概率為,求數列的前6項和;
(3)在對所有游客進行隨機問卷調查的過程中,記已調查過的累計得分恰為分的概率為,探討與之間的關系,并求數列的通項公式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為,曲線C的參數方程為(為參數,).
(1)求直線l的直角坐標方程及曲線C的普通方程;
(2)證明:直線l和曲線C相交,并求相交弦的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列為等比數列,公比為為數列的前項和.
(1)若求
(2)若調換的順序后能構成一個等差數列,求的所有可能值;
(3)是否存在正常數使得對任意正整數不等式總成立?若存在,求出的取值范圍;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com