5.已知等差數(shù)列{an},滿足a1+a5=6,a2+a14=26,則{an}的前10項和S10=(  )
A.40B.120C.100D.80

分析 由等差數(shù)列{an}的性質(zhì)可得:a1+a5=2a3,a2+a14=2a8,解得a3,a8,可得{an}的前10項和S10=$\frac{10({a}_{1}+{a}_{11})}{2}$=5(a3+a8).

解答 解:由等差數(shù)列{an}的性質(zhì)可得:a1+a5=6=2a3,a2+a14=26=2a8,
解得a3=3,a8=13,
則{an}的前10項和S10=$\frac{10({a}_{1}+{a}_{11})}{2}$=5(a3+a8)=5×16=80.
故選:D.

點評 本題考查了等差數(shù)列的通項公式求和公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)等差數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{2}$nan+an-c(c是常數(shù),n∈N*),a2=6.
(Ⅰ)求c的值及數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n}-2}{{2}^{n+1}}$,數(shù)列{bn}的前n項和為Tn,求使得Tn>$\frac{199}{100}$恒成立的最小的正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}的前n項和為Sn.已知an>0,an2+2an=4Sn+3.
(Ⅰ)求a1的值;
(Ⅱ)求{an}的通項公式;
(Ⅲ)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的算法,則輸出的結(jié)果是( )

A.1 B. C. D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

設(shè)集合,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C的中心在原點,焦點在x軸上,焦距為2,離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設(shè)直線l經(jīng)過點M(0,1),且與橢圓C交于A,B兩點,若$|AB|=\frac{{3\sqrt{5}}}{2}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z滿足z=$\frac{2i}{1+i}$,那么z的共軛復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用m,n表示兩條不同的直線,α,β表示兩個不同的平面,給出下列命題:
①若m⊥n,m⊥α,則n∥α; 
②若m∥α,α⊥β則m⊥β;
③若m⊥β,α⊥β,則m∥α;
④若m⊥n,m⊥α,n⊥β,則α⊥β,
其中,正確命題是( 。
A.①②B.②③C.③④D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx+ax+1,a∈R.
(Ⅰ)求f(x)在x=1處的切線方程;
(Ⅱ)若不等式f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案