已知函數(shù)f(x)對任意的x1,x2∈(-1,0)都有
f(x1)-f(x2)
x1-x2
<0
,且函數(shù)y=f(x-1)是偶函數(shù).則下列結(jié)論正確的是( 。
A、f(-1)<f(-
1
2
)<f(-
4
3
)
B、f(-
4
3
)<f(-1)<f(-
1
2
)
C、f(-
4
3
)<f(-
1
2
)<f(-1)
D、f(-
1
2
)<f(-
4
3
)<f(-1)
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)已知條件即得f(x)在(-1,0)上單調(diào)遞減,f(-x-1)=f(x-1),所以f(-
4
3
)=f(-
2
3
),而-
1
2
,-1.-
2
3
都在f(x)的單調(diào)遞減區(qū)間上,所以可比較對應三個函數(shù)值的大。
解答: 解:由已知條件可知,f(x)在(-1,0)上單調(diào)遞減;
∵y=f(x-1)是偶函數(shù);
∴f(-x-1)=f(x-1);
f(-
4
3
)=f(-
1
3
-1)=f(
1
3
-1)=f(-
2
3
)
;
∵f(x)在(-1,0)上單調(diào)遞減,且-
1
2
>-
2
3
>-1
;
f(-
1
2
)<f(-
2
3
)<f(-1)
;
即f(-
1
2
)<f(-
4
3
)<f(-1).
故選D.
點評:考查單調(diào)遞減函數(shù)的定義,以及偶函數(shù)的概念,根據(jù)函數(shù)單調(diào)性比較函數(shù)值的大。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(2,0),離心率為
1
2

(1)求橢圓C的方程;
(2)求過點(1,0)且斜率為
3
2
的直線被C所截線段的中點坐標.
(3)設A1和A2是長軸的兩個端點,直線l垂直于A1A2的延長線于點D,|OD|=4,P是l上異于點D的任意一點.直線A1P交橢圓C于M(不同于A1,A2),設λ=
A2M
A2P
,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨著居民收入的增加,私家車的擁有量呈快速增長趨勢,下表是A市2009年以來私家車擁有量的調(diào)查數(shù)據(jù):
年份2009+x(年)01234
私家車擁有量y(萬輛)5781119
(1)甲、乙兩同學利用統(tǒng)計知識對以上數(shù)據(jù)進行處理,得到的線性回歸方程分別為甲:
y
=3.5x+5,乙:
y
=3.2x+3.6.已知甲、乙兩人中只有一人計算正確,請判斷哪位同學的結(jié)論正確,并說明理由;
(2)在(1)前提下,請估計2014年該城市私家車的擁有量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=4x的焦點為F,過點(
1
2
,0)的動直線交拋物線于不同兩點P,Q,線段PQ中點為M,射線MF與拋物線交于點A.
(Ⅰ)求點M的軌跡方程;
(Ⅱ)設直線PQ的斜率為k,用k表示△APQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設直線l為拋物線C的切線且l∥MN,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AB=4,AC=3,A=30°,則S△ABC=(  )
A、3
B、6
C、3
3
D、6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個命題中的真命題是(  )
A、命題“?x≥2,均有x2-3x+2≥0”的否定是:“?x<2,使得x2-3x+2<0”
B、命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
C、采用系統(tǒng)抽樣法從某班按學號抽取5名同學參加活動,學號為5、16、27、38、49的同學均被選出,則該班人數(shù)可能為60
D、在某項測量中,測量結(jié)果X服從正態(tài)分布N(1,σ2)(σ>0),若X在(0,1)內(nèi)取值的概率為0.4,則X在(0,2)內(nèi)取值的概率為0.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(
4
,π),且sinα•cosα=-
3
4
,則sinα-cosα的值是( 。
A、±
1+
3
2
B、
1+
3
2
C、-
1+
3
2
D、
2+
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α為平面,m,n為直線(  )
A、若m,n與α所成角相等,則m∥n
B、若m∥α,n∥α,則m∥n
C、若m,n與α所成角互余,則m⊥n
D、若m∥α,n⊥α,則m⊥n

查看答案和解析>>

同步練習冊答案