A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
分析 將矩形放在坐標系中,設(shè)P(x,y)利用向量的數(shù)量積公式,作出對應(yīng)的區(qū)域,求出對應(yīng)的面積即可得到結(jié)論.
解答 解:將矩形放在坐標系中,設(shè)P(x,y),
則A(0,0),C(2,1),
則$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1等價為2x+y≥1,
作出不等式對應(yīng)的區(qū)域,為五邊形DCBE,
當y=0時,x=$\frac{1}{2}$,即E($\frac{1}{2}$,0),
則△ADE的面積S=$\frac{1}{2}×\frac{1}{2}×1$=$\frac{1}{4}$,
則五邊形DCBE的面積S=2-$\frac{1}{4}$=$\frac{7}{4}$
則$\overrightarrow{AP}$•$\overrightarrow{AC}$≥1的概率P=$\frac{\frac{7}{4}}{2}$=$\frac{7}{8}$,
故選:D.
點評 本題主要考查幾何概型的概率的計算,根據(jù)向量數(shù)量積的坐標關(guān)系,求出對應(yīng)區(qū)域面積,是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (X∪Y)○Z=(X○Z)∩(Y○Z) | B. | (X∩Y)○Z=(X○Z)∪(Y○Z) | C. | (X∪Y)○Z=(X○Z)∪(Y○Z) | D. | (X∩Y)○Z=(X○Z)∩(Y○Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | -5 | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com