分析 (1)由b=1,利用點到直線的距離公式,求得a和c的值,求得橢圓方程;
(2)假設存在直線l的方程,代入橢圓方程,由△>0,求得t取值范圍,利用韋達定理,中點坐標公式,求得D點坐標,由四邊形PMQN為平行四邊形,則D為線段PQ的中點,求得Q的縱坐標,根據(jù)t的取值范圍即可判斷Q不在橢圓上,故直線l的方程不存在.
解答 解:(1)由橢圓的焦點在x軸上,則b=1,F(xiàn)(c,0),
∴$\sqrt{2}=\frac{|c+1|}{{\sqrt{2}}}$,$c=1,\;\;a=\sqrt{2}$,
故橢圓C的標準方程為$\frac{x^2}{2}+{y^2}=1$.
(2)設直線l的方程為y=2x+t,
設$M({x_1},\;\;{y_1}),\;\;N({x_2},\;\;{y_2}),P({{x_3},\;\;\frac{5}{3}}),\;\;Q({x_4},\;\;{y_4})$,MN的中點為D(x0,y0),
由$\left\{\begin{array}{l}y=2x+t,\;\;\\{x^2}+2{y^2}=2,\;\;\end{array}\right.$消去x,得9y2-2ty+t2-8=0,
則${y_1}+{y_2}=\frac{2t}{9}$,且△=4t2-36(t2-8)>0,解得:-3<t<3,
故${y_0}=\frac{{{y_1}+{y_2}}}{2}=\frac{t}{9}$,
由$\overrightarrow{PM}=\overrightarrow{NQ}$,知四邊形PMQN為平行四邊形,
而D為線段MN的中點,因此D為線段PQ的中點,
∴${y_0}=\frac{{\frac{5}{3}+{y_4}}}{2}=\frac{t}{9}$,
可得${y_4}=\frac{2t-15}{9}$,
又-3<t<3,可得$-\frac{7}{3}<{y_4}<-1$,
因此點Q不在橢圓上,
故不存在滿足題意的直線l.
點評 本題考查橢圓的標準方程及簡單幾何性質(zhì),直線與橢圓的位置關系,考查韋達定理,中點坐標公式及判別式的應用,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=±$\sqrt{3}$x | B. | y=±4x | C. | y=±$\sqrt{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m⊥l,m∥α,l∥β | B. | m⊥l,α∩β=m,l?α | C. | m∥l,m⊥α,l⊥β | D. | m∥l,l⊥β,m?α |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3和5 | B. | 4和6 | C. | 6和8 | D. | 5和7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{\sqrt{41}}{5}$ | D. | $\frac{5}{\sqrt{41}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (4,+∞) | B. | (-∞,4) | C. | (8,+∞) | D. | (-∞,8) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com