12.函數(shù)f(x)=log3(x-1)的定義域是( 。
A.(1,+∞)B.[1,+∞)C.{x∈R|x≠1}D.R

分析 由題中函數(shù)的解析式,我們根據(jù)使函數(shù)的解析式有意義,即真數(shù)部分大于0的原則,構(gòu)造關(guān)于x的不等式,解不等式求出x的取值范圍即可.

解答 解:要使函數(shù)f(x)=log3(x-1)的解析式有意義,
自變量x須滿足:x-1>0,
解得x>1.
故函數(shù)f(x)=log3(x-1)的定義域是(1,+∞),
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是對數(shù)函數(shù)的定義域,對數(shù)式有意義時,真數(shù)部分大于0,這一基礎(chǔ)知識點(diǎn)的直接考察,難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.方程sin(2x+$\frac{π}{3}$)+m=0在(0,π)內(nèi)有相異兩解α,β,則tan(α+β)=( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某工廠生產(chǎn)某種零件,已知日均銷售量x(件)與貨價P(元)之間的函數(shù)關(guān)系式為P=160-2x,生產(chǎn)x件成本的函數(shù)關(guān)系式為C=500+3x.試討論,該工廠平均日銷售量x為何值時,能獲得最大利潤?并求出最大利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.對于數(shù)列{an}滿足:a1=1,an+1-an∈{a1,a2,…an}(n∈N+),記滿足條件的所有數(shù)列{an}中,a10的最大值為a,最小值為b,則a-b=502.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.不等式組$\left\{\begin{array}{l}{x-y-7≤0}\\{x+y-11≥0}\\{2x+y-14≥0}\\{\;}\end{array}\right.$表示的平面區(qū)域?yàn)镈,若對數(shù)函數(shù)y=logax(a>0,a≠1)的圖象上存在區(qū)域D上的點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.[1,3]B.(0,1)∪(1,3]C.[3,+∞)D.($\frac{1}{2}$,1)∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.拋物線y2=-8x的焦點(diǎn)到準(zhǔn)線的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知下列四個命題:
p1:若直線l和平面α內(nèi)的無數(shù)條直線垂直,則l⊥α;
p2:若f(x)=2x-2-x,則?x∈R,f(-x)=-f(x);
p3:若$f(x)=x+\frac{1}{x+1}$,則?x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,則sinA>sinB.
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x∈(-∞,0]時,f(x)為減函數(shù),若a=f(20.3),$b=f({{{log}_{\frac{1}{2}}}4})$,c=f(log25),則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“?x>0,x2>0”的否定是(  )
A.?x>0,x2<0B.?x>0,x2≤0C.$?{x_0}>0,{x_0}^2<0$D.$?{x_0}>0,{x_0}^2≤0$

查看答案和解析>>

同步練習(xí)冊答案