17.將函數(shù)f(x)=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個單位,所得圖象關(guān)于原點對稱,則φ的最小值為$\frac{π}{3}$.

分析 根據(jù)輔助角公式,化簡函數(shù)得y=2sin(x+$\frac{π}{3}$),從而得出平移后的圖象對應(yīng)的函數(shù)為y=2sin(x+$\frac{π}{3}$-φ).由平移后的圖象關(guān)于原點對稱,根據(jù)正弦函數(shù)的圖象與性質(zhì)得到$\frac{π}{3}$-φ=kπ(k∈Z),再取k=0得到φ的最小正值為$\frac{π}{3}$.

解答 解:y=sinx+$\sqrt{3}$cosx=2(sinxcos$\frac{π}{3}$+cosxsin$\frac{π}{3}$)=2sin(x+$\frac{π}{3}$).
將函數(shù)的圖象向右平移φ(φ>0)個單位長度后,得到y(tǒng)=2sin[(x-φ)+$\frac{π}{3}$]=2sin(x+$\frac{π}{3}$-φ)的圖象.
∵平移后得到的圖象關(guān)于坐標原點對稱,
∴$\frac{π}{3}$-φ=kπ(k∈Z),可得φ=$\frac{π}{3}$-kπ(k∈Z),
取k=0,得到φ的最小正值為$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點評 本題給出三角函數(shù)表達式,已知函數(shù)圖象右移φ個單位個圖象關(guān)于原點對稱,求平移的最小長度.著重考查了三角恒等變換公式、正弦函數(shù)的圖象與性質(zhì)和函數(shù)圖象平移公式等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知全集U=R,集合A={x|-1<x<5},B={x|2<x<8}.
(1)求A∩(∁UB)和(∁UA)∩(∁UB);
(2)若集合C={x|a+1≤x≤2a-2},且(∁UA)∩C={x|6≤x≤b},求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=AC=3,又$cos∠BAC=-\frac{3}{5}$,則該三棱錐外接球的表面積為49π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.現(xiàn)有編號為①②③④的四個判斷題,已知其中3正1誤,甲判斷①②③正確,乙判斷①③④正確,丙說:“我判斷為正確的題目均有且只有兩個跟甲、乙相同”,則在丙的判斷中,判斷為正確的題目一定含有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$,若對任意的x1,x2∈[-1,2],恒有af(1)≥|f(x1)-f(x2)|成立,則實數(shù)a的取值范圍是[e2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.今年我國許多省市霧霾頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市學(xué)校征召100名教師做義務(wù)宣傳志愿者,成立環(huán)境保護宣傳組,現(xiàn)把該組的成員按年齡分成5組:第一組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45),得到的頻率分布直方圖如圖所示.
(Ⅰ)若從第3,4,5組中用分層抽樣的方法選出6名志愿者參加某社區(qū)的宣傳活動,應(yīng)從第3,4,5組各選出多少名志愿者?
(Ⅱ)在(Ⅰ)的條件下,該組織決定在這6名志愿者中隨機選2名志愿者介紹宣傳經(jīng)驗,求第4組至少有1名志愿者被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在如圖所示的幾何體中,正方形ABEF所在的平面與正三角形ABC所在的平面互相垂直,CD∥BE,且BE=2CD,M是ED的中點.
(1)求證:AD∥平面BFM;
(2)求二面角E-BM-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在一個個體數(shù)目為1002的總體中,要利用系統(tǒng)抽樣抽取一個容量為50的樣本,先用簡單隨機抽樣刪除兩個個體,然后再從這1000個個體中抽50個個體,在這個過程中,每個個體被抽到的概率為( 。
A.$\frac{1}{20}$
B.$\frac{50}{1002}$
C.$\frac{1}{1001}$
D.有兩個個體與其它個體被抽到的概率不相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.黃山市某民營企業(yè)2016年1,2,3月份的利潤分別為1萬元、1.2萬元和1.3萬元,為了估測以后每個月的利潤,以這3個月的利潤數(shù)字為依據(jù),用一個函數(shù)模擬該企業(yè)的利潤y(萬元)與月份數(shù)x的關(guān)系,模擬函數(shù)可以選用二次函數(shù)f(x)=px2+qx+r(p≠0),也可以選用函數(shù)g(x)=a•bx+c(其中a,b,c為常數(shù)),已知4月份該企業(yè)的利潤為1.314萬元,請問用以上哪個函數(shù)作為模擬函數(shù)更好?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案