8.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,AB=AC=3,又$cos∠BAC=-\frac{3}{5}$,則該三棱錐外接球的表面積為49π.

分析 由余弦定理求出BC,可得△ABC外接圓的半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐P-ABC的外接球的表面積.

解答 解:∵AB=AC=3,$cos∠BAC=-\frac{3}{5}$,
∴由余弦定理可得BC=$\sqrt{9+9-2×3×3×(-\frac{3}{5})}$=$\frac{12\sqrt{5}}{5}$,
∵sin∠BAC=$\frac{4}{5}$,
∴△ABC外接圓的半徑為r=$\frac{3\sqrt{5}}{2}$,
設(shè)球心到平面ABC的距離為d,則由勾股定理可得R2=12+($\frac{3\sqrt{5}}{2}$)2=$\frac{49}{4}$,
∴三棱錐P-ABC的外接球的表面積為4πR2=49π.
故答案為:49π.

點(diǎn)評 本題考查三棱錐P-ABC的外接球的表面積,考查學(xué)生的計算能力,確定三棱錐P-ABC的外接球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于x的不等式ax2+x+b>0的解集為(1,2),則a+b=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知兩點(diǎn)M(-1,2)與N(3,4),若點(diǎn)P在直線l:y=x上,則|PM|+|PN|的取值構(gòu)成的集合為[$\sqrt{26}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是偶函數(shù),當(dāng)x≥0時,f(x)=x+1,則f(-1)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為${F_1},{F_2},{a^2}+{b^2}=4$,短軸端點(diǎn)B與兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形面積最大時,橢圓的短半軸長為( 。
A.1B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A、B、C的對邊長分別為a,b,c,若b2+c2-a2=bc
(1)求角A的大。
(2)若$a=\sqrt{3}$,求BC邊上的中線AM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方棱臺(上、下底面均為矩形的棱臺)的專用術(shù)語,關(guān)于“芻童”體積計算的描述,《九章算術(shù)》注曰:“倍上袤,下袤從之,亦倍下袤,上袤從之,各以其廣乘之,皆六而一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘,將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘,把這兩個數(shù)值相加,與高相乘,再取其六分之一,依此算法,現(xiàn)有上、下底面為相似矩形的棱臺,相似比為$\frac{1}{2}$,高為3,其上底面的周長為6,則該棱臺的體積的最大值為(  )
A.14B.56C.$\frac{63}{4}$D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.將函數(shù)f(x)=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個單位,所得圖象關(guān)于原點(diǎn)對稱,則φ的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知各項均為正數(shù)的等比數(shù)列{an}的前三項為a,2,a+3,記前n項和為Sn
(1)設(shè)Sn=63,求a和n的值;
(2)令bn=(2n+1)an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案