分析 由余弦定理求出BC,可得△ABC外接圓的半徑,從而可求該三棱錐的外接球的半徑,即可求出三棱錐P-ABC的外接球的表面積.
解答 解:∵AB=AC=3,$cos∠BAC=-\frac{3}{5}$,
∴由余弦定理可得BC=$\sqrt{9+9-2×3×3×(-\frac{3}{5})}$=$\frac{12\sqrt{5}}{5}$,
∵sin∠BAC=$\frac{4}{5}$,
∴△ABC外接圓的半徑為r=$\frac{3\sqrt{5}}{2}$,
設(shè)球心到平面ABC的距離為d,則由勾股定理可得R2=12+($\frac{3\sqrt{5}}{2}$)2=$\frac{49}{4}$,
∴三棱錐P-ABC的外接球的表面積為4πR2=49π.
故答案為:49π.
點(diǎn)評 本題考查三棱錐P-ABC的外接球的表面積,考查學(xué)生的計算能力,確定三棱錐P-ABC的外接球的半徑是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 56 | C. | $\frac{63}{4}$ | D. | 63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com