【題目】集合A={x|-1<x<1},B={x|x<a}.

(1)若AB=,求a的取值范圍;

(2)若AB={x|x<1},求a的取值范圍.

【答案】(1){a|a≤-1};(2){a|-1<a≤1}.

【解析】試題分析:(1)根據(jù)AB,且AB的交集為空集,利用數(shù)軸即可求出a的范圍即可;
(2)根據(jù)AB的并集,利用數(shù)軸求出a的范圍即可.

試題解析:

(1)如下圖所示,A={x|-1<x<1},B={x|x<a},且AB=,

∴數(shù)軸上的點(diǎn)xax=-1的左側(cè)(含點(diǎn)x=-1),

a≤-1,即a的取值范圍為{a|a≤-1}.

(2)如下圖所示,A={x|-1<x<1},B={x|x<a},且AB={x|x<1},

∴數(shù)軸上的點(diǎn)xax=-1和x=1之間(含點(diǎn)x=1,但不含點(diǎn)x=-1),

∴-1<a≤1,即a的取值范圍為{a|-1<a≤1}.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著我國(guó)經(jīng)濟(jì)的迅速發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如表:

年份

2010

2011

2012

2013

2014

時(shí)間代號(hào)x

1

2

3

4

5

儲(chǔ)蓄存款y (千億元)

5

6

7

8

10

附:回歸方程 中, =
(1)求y關(guān)于x的線性回歸方程 ;
(2)用所求回歸方程預(yù)測(cè)該地區(qū)今年的人民幣儲(chǔ)蓄存款.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x
(1)求函數(shù)f(x)的單調(diào)區(qū)間,并求函數(shù)f(x)的極值;
(2)若方程x3﹣3x﹣a+1=0有三個(gè)相異的實(shí)數(shù)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;

(2)若函數(shù)上為單調(diào)增函數(shù),求的取值范圍;

(3)設(shè)為正實(shí)數(shù),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log (x2﹣9)的單調(diào)遞增區(qū)間為(
A.(0,+∞)
B.(﹣∞,0)
C.(3,+∞)
D.(﹣∞,﹣3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當(dāng)a=﹣ ,c= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c= +1時(shí),若f(x)≥ 對(duì)x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四種說法:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號(hào)是(把你認(rèn)為正確敘述的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在[﹣4,4]上的奇函數(shù)f(x),已知當(dāng)x∈[﹣4,0]時(shí),f(x)= + (a∈R).
(1)求f(x)在[0,4]上的解析式;
(2)若x∈[﹣2,﹣1]時(shí),不等式f(x)≤ 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案