【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)
【答案】D
【解析】解:∵y=ex和y=x﹣2是關(guān)于x的單調(diào)遞增函數(shù),
∴函數(shù)f(x)=ex+x﹣2在R上單調(diào)遞增,
分別作出y=ex , y=2﹣x的圖象如右圖所示,
∴f(0)=1+0﹣2<0,f(1)=e﹣1>0,
又∵f(a)=0,
∴0<a<1,
同理,g(x)=lnx+x2﹣3在R+上單調(diào)遞增,g(1)=ln1+1﹣3=﹣2<0,g( )= +( )2﹣3= >0,
又∵g(b)=0,
∴1 ,
∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,
f(b)=eb+b﹣2>f(1)=e+1﹣2=e﹣1>0,
∴g(a)<0<f(b).
故選:D.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù),
(1)求a的值;
(2)試判斷f(x)在(﹣∞,+∞)的單調(diào)性,并請(qǐng)你用函數(shù)單調(diào)性的定義給予證明;
(3)若對(duì)任意的t∈R,不等式f(mt2+1)+f(1﹣mt)<0恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解人們對(duì)于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡大點(diǎn)頻率分布及支持“生育二胎”人數(shù)如下表:
年齡 | ||||||
頻率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“生育二胎放開”政策的支持度有差異:
(2)若對(duì)年齡在的被調(diào)查人中隨機(jī)選取兩人進(jìn)行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓心為的圓上的動(dòng)點(diǎn),點(diǎn),線段的垂直平分線交于點(diǎn).
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)矩形的邊所在直線與曲線均相切,設(shè)矩形的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線平面,直線平面,給出下列命題:
①若,則; ②若,則;
③若,則; ④若,則.
其中正確命題的序號(hào)是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A={x|-1<x<1},B={x|x<a}.
(1)若A∩B=,求a的取值范圍;
(2)若A∪B={x|x<1},求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E: (a>b>0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的 倍,過焦點(diǎn)且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為2 .
(1)求橢圓E的方程;
(2)設(shè)過右焦點(diǎn)F2且與x軸不垂直的直線l交橢圓E于P,Q兩點(diǎn),在線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是遞增的等差數(shù)列,a1 , a2是方程x2﹣4x+3=0的兩根.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長(zhǎng)安,至齊,齊去長(zhǎng)安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時(shí),良馬走了二十一日.
則以上說法錯(cuò)誤的個(gè)數(shù)是( )個(gè)
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com