【題目】對(duì)于函數(shù),若,則稱不動(dòng)點(diǎn),若,則稱穩(wěn)定點(diǎn),函數(shù)不動(dòng)點(diǎn)穩(wěn)定點(diǎn)的集合分別記為,即,那么,

(1)求函數(shù)穩(wěn)定點(diǎn)”;

(2),且,求實(shí)數(shù)的取值范圍.

【答案】(1)4;(2).

【解析】

1)由穩(wěn)定點(diǎn)的定義解方程即可得解;

2)研究可知當(dāng)時(shí),,當(dāng)時(shí),集合的元素為1,;研究可知,中要么沒有元素,要么與的元素相同,再分類討論即可得解.

解:(1)由題意得,,即,求得,所以函數(shù)的“穩(wěn)定點(diǎn)”為.

(2)因?yàn)?/span>,則有實(shí)根,即有實(shí)根,

當(dāng)時(shí),所以 ;

當(dāng)時(shí),方程符合題意.

因?yàn)?/span>,則有實(shí)根,即有實(shí)根,化簡(jiǎn)可得,

因?yàn)?/span>,所以要么沒有實(shí)根,要么實(shí)根是方程的根.

沒有實(shí)根,則 ;

有實(shí)根,且實(shí)根是方程的根,由方程,代入,有,再代入可得

故實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)進(jìn)行購(gòu)物摸獎(jiǎng)活動(dòng),規(guī)則是:在一個(gè)封閉的紙箱中裝有標(biāo)號(hào)分別為1,2,3,4,5,6的六個(gè)小球,每次摸獎(jiǎng)需要同時(shí)取出兩個(gè)球,每位顧客最多有兩次摸獎(jiǎng)機(jī)會(huì),并規(guī)定:若第一次取出的兩球號(hào)碼連號(hào),則中獎(jiǎng),摸獎(jiǎng)結(jié)束;若第一次未中獎(jiǎng),則將這兩個(gè)小球放回后進(jìn)行第二次摸球,若與第一次取出的兩個(gè)小球號(hào)碼相同,則為中獎(jiǎng),按照這樣的規(guī)則摸獎(jiǎng),中獎(jiǎng)的概率為(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)頂點(diǎn)坐標(biāo)分別為:,直線經(jīng)過點(diǎn).

1)求外接圓的方程;

2)若直線相切,求直線的方程;

3)若直線相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,,,函數(shù),的最小正周期為

(1)求的單調(diào)增區(qū)間;

(2)方程;在上有且只有一個(gè)解,求實(shí)數(shù)n的取值范圍;

(3)是否存在實(shí)數(shù)m滿足對(duì)任意x1∈[-1,1],都存在x2R,使得++m-)+1>fx2)成立.若存在,求m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(為參數(shù)),曲線C的參數(shù)方程為α為參數(shù)).

)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(3),判斷點(diǎn)P與直線l位置關(guān)系;

)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在著名的漢諾塔問題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )

A. 33B. 31C. 17D. 15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加某次知識(shí)競(jìng)賽的1000同學(xué)中,隨機(jī)抽取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成,,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:

1)補(bǔ)全頻率分布直方圖,并估計(jì)本次知識(shí)競(jìng)賽的均分;

2)如果確定不低于85分的同學(xué)進(jìn)入復(fù)賽,問這1000名參賽同學(xué)中估計(jì)有多少人進(jìn)人復(fù)賽;

3)若從第一組,第二組和第六組三組學(xué)生中分層抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求所抽取的2人成績(jī)之差的絕對(duì)值大于20的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列同時(shí)滿足條件:①存在互異的使得為常數(shù));

②當(dāng)時(shí),對(duì)任意都有,則稱數(shù)列為雙底數(shù)列.

(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);

; ②; ③

(2)設(shè),若數(shù)列是雙底數(shù)列,求實(shí)數(shù)的值以及數(shù)列的前項(xiàng)和;

(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案