近年來,我國許多城市霧霾現(xiàn)象頻發(fā),PM2.5(即環(huán)境空氣中空氣動(dòng)力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物)是衡量空氣質(zhì)量的一項(xiàng)指標(biāo).據(jù)相關(guān)規(guī)定,PM2.5日均濃度值不超過35微克/立方米空氣質(zhì)量為優(yōu),在35微克/立方米至75微克/立方米之間的空氣質(zhì)量為良,某市環(huán)保局隨機(jī)抽取了一居民區(qū)今年上半年中30天的PM2.5日均濃度監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別PM2.5日均濃度(微克/立方米)頻數(shù)(天)
第一組(15,35]3
第二組(35,55]9
第三組(55,75]12
第四組(75,95]6
(1)估計(jì)該樣本的中位數(shù)和平均數(shù);
(2)將頻率視為概率,用樣本估計(jì)總體,對(duì)于今年上半年中的某3天,記這3天中該居民區(qū)空氣質(zhì)量為優(yōu)或良的天數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.
考點(diǎn):離散型隨機(jī)變量的期望與方差,眾數(shù)、中位數(shù)、平均數(shù),極差、方差與標(biāo)準(zhǔn)差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)由數(shù)據(jù)統(tǒng)計(jì)表,利用中位數(shù)求法和平均數(shù)公式能求出中位數(shù)和平均數(shù).
(2)由已知得X~N(3,
4
5
)
,由此能求出X的分布列及數(shù)學(xué)期望EX.
解答: 解:(1)由已知得中位數(shù)為:55+20×
3
12
=60
平均數(shù)為:25×0.1+45×0.3+65×0.4+85×0.2=59
(2)∵上半年中某一天的空氣質(zhì)量為優(yōu)或良的概率為
3+9+12
30
=
4
5

∴X~N(3,
4
5
)

P(X=0)=
C
0
3
(
1
5
)3=
1
125
,
P(X=1)=
C
1
3
(
4
5
)1(
1
5
)2=
12
125

P(X=2)=
C
2
3
(
4
5
)2(
1
5
)1=
48
125
,
P(X=3)=
C
3
3
(
4
5
)3=
64
125

X0123
P
1
125
12
125
48
125
64
125
∴X的分布列為X的數(shù)學(xué)期望EX=
4
5
=2.8.
點(diǎn)評(píng):本題考查中位數(shù)和平均數(shù)的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意排列組合知識(shí)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知Ω為xOy平面內(nèi)的一個(gè)區(qū)域,p:點(diǎn)(a,b)∈{(x,y)|
x-y+2≤0
x≥0
3x+y-6≤0
;q:點(diǎn)(a,b)∈Ω.如果p是q的充分條件,那么區(qū)域Ω的面積的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求f(x)=
1+sinx-2sin2(
π
4
-
x
2
)
4sin
x
2
-
3
sin
x
2
的最大值及取最大值時(shí)相應(yīng)的x的集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人站到共有7級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站2人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法種數(shù)是( 。
A、258B、306
C、336D、296

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將5名實(shí)習(xí)老師分配到4個(gè)班級(jí)任課,每班至少1人,則不同的分配方法數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=2且a2,a4,a8成等比數(shù)列.求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,不等式
x+y≥0
x-y≥0
x≤a
(a為常數(shù))表示平面區(qū)域的面積為9,則
y-2
x+4
的最小值為(  )
A、-1
B、
2
7
C、
1
7
D、-
5
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)p:方程x2+mx+4=0有兩個(gè)不相等的實(shí)根;q:曲線:
x2
4
+
y2
m-1
=1表示的是焦點(diǎn)在x軸上的橢圓.若“p或q”是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x2-2|+x2+ax.
(1)若a=3,求方程f(x)=0的解;
(2)若函數(shù)f(x)在(0,2)上有兩個(gè)零點(diǎn)x1,x2
①求實(shí)數(shù)a的取值范圍;
②證明:
2
1
x1
+
1
x2
<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案