10.寫出1×4,2×5,3×6,…,n(n+3)的前n項(xiàng)的和公式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

分析 利用公式12+22+32+…+n2=$\frac{n(n+1)(2n+1)}{6}$和等比數(shù)列的求和公式進(jìn)行猜想,再用數(shù)學(xué)歸納法證明.

解答 解:1×4+2×5+3×6+…+n(n+3)=$\frac{n(n+1)(n+5)}{3}$.
證明:當(dāng)n=1時(shí),1×4=4,$\frac{1×2×6}{3}$=4,顯然結(jié)論成立;
假設(shè)n=k時(shí),結(jié)論成立,即1×4+2×5+3×6+…+k(k+3)=$\frac{k(k+1)(k+5)}{3}$,
則n=k+1時(shí),1×4+2×5+3×6+…+k(k+3)+(k+1)(k+4)=$\frac{k(k+1)(k+5)}{3}$+(k+1)(k+4)
=(k+1)($\frac{k(k+5)}{3}$+k+4)=$\frac{(k+1)({k}^{2}+8k+12)}{3}$
=$\frac{(k+1)(k+2)(k+6)}{3}$.
∴當(dāng)n=k+1時(shí),結(jié)論成立.
綜上,1×4+2×5+3×6+…+n(n+3)=$\frac{n(n+1)(n+5)}{3}$.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知點(diǎn)H(-6,0),點(diǎn)P(0,b)在y軸上,點(diǎn)Q(a,0)在x軸的正半軸上,且滿足$\overrightarrow{HP}$⊥$\overrightarrow{PQ}$,點(diǎn)M在直線PQ上,且滿足$\overrightarrow{PM}$-2$\overrightarrow{MQ}$=$\overrightarrow{0}$,
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)T(-1,0)作直線l與軌跡C交于A、B兩點(diǎn),線段AB的垂直平分線與x軸的交點(diǎn)為E(x0,0),設(shè)線段AB的中點(diǎn)為D,且2|DE|=$\sqrt{3}$|AB|,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求過點(diǎn)(0,4)且與橢圓9x2+4y2=36有相同焦點(diǎn)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.四邊形ABCD中,若向量$\overrightarrow{AB}$=$\overrightarrow{DC}$,則四邊形ABCD( 。
A.是平行四邊形或梯形B.是梯形
C.不是平行四邊形,也不是梯形D.是平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在四棱錐S-ABCD中,平面SAD⊥平面ABCD,AB∥DC,△SAD是等邊三角形,且SD=2,BD=2$\sqrt{3}$,AB=2CD=4.
(1)證明:平面SBD⊥平面SAD;
(2)若E是SC上的一點(diǎn),當(dāng)E點(diǎn)位于線段SC上什么位置時(shí),SA∥平面EBD?請(qǐng)證明你的結(jié)論;
(3)求四棱錐S-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB上的點(diǎn).
(Ⅰ)求證:平面EAC⊥平面PBC;
(Ⅱ)若E是PB的中點(diǎn),若AE與平面ABCD所成角為45°,求三棱錐P-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點(diǎn)F是拋物線C:y2=4x的焦點(diǎn),P是拋物線C在第一象限內(nèi)的點(diǎn),且|PF|=5.
(1)求點(diǎn)P的坐標(biāo);
(2)以P為圓心的動(dòng)圓與x軸分別交于兩點(diǎn)A、B,延長PA、PB分別交拋物線C于M、N兩點(diǎn).
①判斷直線MN的斜率是否為定值,并說明理由;
②延長NM交x軸于點(diǎn)E,若|EM|=$\frac{1}{3}$|NE|,求cos∠MPN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若不等式$\frac{4x+1}{x+2}$<0和不等式ax2+bx-2>0的解集相同,則a、b的值為( 。
A.a=-8   b=-10B.a=-4   b=-9C.a=-1   b=9D.a=-1   b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{tan\frac{5π}{8}x,x≤0}\\{-lo{g}_{5}x,x>0}\end{array}\right.$,則f(f(25))=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案