7.(1)已知函數(shù)$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$的圖象的一部分如圖所示.求函數(shù)f(x)的解析式;
(2)已知f(x)=$sin(2x+\frac{π}{6})$+$\frac{3}{2}$,x∈R.函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣變換得到?

分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:(1)∵如圖是函數(shù)$f(x)=Asin{(ωx+φ)_{\;}}(A>0,ω>0,|φ|<\frac{π}{2})$的圖象的一部分,
∴A=2,$\frac{1}{4}•\frac{2π}{ω}$=3-1,∴ω=$\frac{π}{4}$,再根據(jù)五點(diǎn)法作圖可得$\frac{π}{4}$•(-1)+φ=0,∴φ=$\frac{π}{4}$,
∴f(x)=2sin($\frac{π}{4}x+\frac{π}{4}$).
(2)把函數(shù)y=sin2x(x∈R)的圖象向左平移$\frac{π}{12}$個單位,再向上平移$\frac{3}{2}$個單位,
可得y=sin2(x+$\frac{π}{12}$)+$\frac{3}{2}$=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$的圖象.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{ax-2}{x-1}$的圖象關(guān)于點(diǎn)(1,1)對稱,則實(shí)數(shù)a=1 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若Sn為等差數(shù)列{an}的前n項和,S9=-36,S13=-104,則a5=-4;S11=-66.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.關(guān)于相關(guān)指數(shù)R2,下列說法正確的是( 。
A.R2越大,線性相關(guān)系數(shù)r越小
B.R2越小,線性相關(guān)系數(shù)越小
C.R2越大,線性相關(guān)程度越小,R2越接近0,線性先關(guān)程度越大
D.R2≥0且R2越接近1,線性相關(guān)程度越大,R2越接近0,線性相關(guān)程度越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知直線l的極坐標(biāo)方程是ρcosθ-ρsinθ-1=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,曲線C的參數(shù)方程是$\left\{{\begin{array}{l}{x=cosα-1}\\{y=sinα}\end{array}}\right.$(α為參數(shù)).
(Ⅰ)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(Ⅱ)若直線l與x、y軸交于M、N兩點(diǎn),點(diǎn)P為曲線C上任一點(diǎn).求△PMN的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫出圓C的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
(2)P為直線l上一動點(diǎn),當(dāng)P到圓心C的距離最小時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=ax+2-3(a>0,a≠1)恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny=-2(m>0,n>0)上,則$\frac{1}{m}+\frac{1}{n}$的最小值為(  )
A.3B.4C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{{3-2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在復(fù)平面內(nèi),復(fù)數(shù)$z=\frac{2i}{1-i}$(i為虛數(shù)單位)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=sinx+cosx,則f(x)的最大值$\sqrt{2}$;f(x)的一條對稱軸為$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊答案