9.拋物線y2=6x的焦點(diǎn)到雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線的距離是( 。
A.$\frac{{3\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{3\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 求出拋物線的焦點(diǎn)坐標(biāo)和雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式進(jìn)行求解即可.

解答 解:由y2=6x得拋物線的焦點(diǎn)在x軸上,且2p=6,p=3,則$\frac{p}{2}$=$\frac{3}{2}$,即拋物線的焦點(diǎn)坐標(biāo)為F($\frac{3}{2}$,0),
雙曲線x2-$\frac{{y}^{2}}{3}$=1的漸近線方程為y=±$\sqrt{3}$x,
不妨取漸近線為y=-$\sqrt{3}$x,即$\sqrt{3}$x+y=0,
則點(diǎn)F到漸近線的距離d=$\frac{|\frac{3}{2}×\sqrt{3}+0|}{\sqrt{(\sqrt{3})^{2}+1}}$=$\frac{{3\sqrt{3}}}{4}$,
故選:A.

點(diǎn)評(píng) 本題主要考查雙曲線和拋物線的方程和性質(zhì)以及點(diǎn)到直線的距離公式的應(yīng)用,考查學(xué)生的計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=O,△PAC是邊長(zhǎng)為2的等邊三角形,PB=PD,BD=2$\sqrt{3}$,AP=4AF.
(Ⅰ)求證:PO⊥底面ABCD;
(Ⅱ)求直線CP與平面BDF所成角的大小;
(Ⅲ)求二面角F-BD-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C=$\frac{π}{3}$,△ABC的面積為2$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.把函數(shù)y=cosx(x∈R)的圖象上所有的點(diǎn)向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度,再把所得圖上各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$(縱坐標(biāo)不變),得到的圖象所表示的函數(shù)是( 。
A.$y=cos(2x-\frac{π}{3})\;\;x∈R$B.$y=cos(\frac{x}{2}+\frac{π}{3})\;\;x∈R$
C.$y=cos(2x+\frac{π}{3})\;\;x∈R$D.$y=cos(2x+\frac{2}{3}π)\;\;x∈R$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)m,n是不同的直線,α,β,γ是不同的平面,有以下四個(gè)命題:
①$\left.\begin{array}{l}α∥β\\ α∥γ\end{array}\right\}⇒β∥γ$
②$\left.\begin{array}{l}α⊥β\\ m∥α\end{array}\right\}⇒m⊥β$
③$\left.\begin{array}{l}m⊥α\\ m∥β\end{array}\right\}⇒α⊥β$
④$\left.\begin{array}{l}m∥n\\ n?α\end{array}\right\}⇒m∥α$
其中,正確的命題是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xoy中,直線l經(jīng)過(guò)點(diǎn)P(7,0),其傾斜角為α,以原點(diǎn)o為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,建立極坐標(biāo)系,設(shè)曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0.
(1)若直線l與曲線C有公共點(diǎn),求α的取值范圍:
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求$2x+\frac{3}{2}y$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$f(x)=\left\{\begin{array}{l}x+1,x≤1\\ \frac{1}{2}{x^2},x>1\end{array}\right.$,求$\int_{\;0}^{\;2}{f(x)dx}$=$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知關(guān)于x的方程(2p2+1)x2-5px-2=0(p∈R)有兩個(gè)實(shí)根
(1)當(dāng)p=1時(shí),在△ABC中,角A,B,C為三角形內(nèi)角,tanA,tanB是方程的兩個(gè)根.
①求角C.②AC=3,BC=$\sqrt{2}$,D在AB上,AD=DC,求CD的長(zhǎng).
(2)M(x1,px1+1),N(x2,px2+1),T(0,1).且x1,x2為方程的兩個(gè)實(shí)根.設(shè)O為坐標(biāo)原點(diǎn),是否存在常數(shù)λ,使得$\overrightarrow{OM}$$•\overrightarrow{ON}$+λ$\overrightarrow{TM}$•$\overrightarrow{TN}$為定值?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{{\sqrt{2}}}{2}$,其左、右頂點(diǎn)分別為點(diǎn)A、B,且點(diǎn)A關(guān)于直線y=x對(duì)稱的點(diǎn)在直線y=3x-2上,點(diǎn)M在橢圓E上,且不與點(diǎn)A、B重合.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)N在圓O:x2+y2=b2上,MN⊥y軸,若直線MA、MB與y軸的交點(diǎn)分別為C、D,求證:sin∠CND為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案