【題目】為了治理大氣污染,某市2017年初采用了一系列措施,比如“煤改電”,“煤改氣”,“整治散落污染企業(yè)”等.下表是該市2016年11月份和2017年11月份的空氣質(zhì)量指數(shù)()(指數(shù)越小,空氣質(zhì)量越好)統(tǒng)計(jì)表.根據(jù)表中數(shù)據(jù)回答下列問題:
(1)將2017年11月的空氣質(zhì)量指數(shù)數(shù)據(jù)用該天的對應(yīng)日期作為樣本編號(hào),再用系統(tǒng)抽樣方法從中抽取6個(gè)數(shù)據(jù),若在2017年11月16日到11月20日這五天中用簡單隨機(jī)抽樣抽取到的樣本的編號(hào)是19號(hào),寫出抽出的樣本數(shù)據(jù);
(2)根據(jù)《環(huán)境空氣質(zhì)量指數(shù)()技術(shù)規(guī)定(試行)》規(guī)定:當(dāng)空氣質(zhì)量指數(shù)為(含50)時(shí),空氣質(zhì)量級別為一級,用從(1)中抽出的樣本數(shù)據(jù)中隨機(jī)抽取三天的數(shù)據(jù),空氣質(zhì)量級別為一級的天數(shù)為,求的分布列及數(shù)學(xué)期望;
(3)求出這兩年11月空氣質(zhì)量指數(shù)為一級的概率,你認(rèn)為該市2017年初開始采取的這些大氣污染治理措施是否有效?
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】試題分析:(1)根據(jù)系統(tǒng)抽樣的特征,確定分段間隔,得出樣本的編號(hào),再找出對應(yīng)的樣本數(shù)據(jù);(2)隨機(jī)變量所有可能的取值為0,1,2,3,分別求出時(shí)的概率,寫出分布列,求出數(shù)學(xué)期望;(3)分別求出這兩年11月空氣質(zhì)量指數(shù)為一級的概率,作比較,得出結(jié)論。
試題解析:(1)系統(tǒng)抽樣,分段間隔,
這些抽出的樣本的編號(hào)依次是4號(hào)、9號(hào)、14號(hào)、19號(hào)、24號(hào)、29號(hào),
對應(yīng)的樣本數(shù)據(jù)依次是、56、94、48、40、221.
(2)隨機(jī)變量所有可能的取值為0,1,2,3,
,,,,
隨機(jī)變量的分布列為:
0 | 1 | 2 | 3 | |
所以.
(3)2016年11月指數(shù)為一級的概率,
2017年11月指數(shù)為一級的概率,
,說明這些措施是有效的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,選項(xiàng)正確的是( )
A. 在回歸直線中,變量時(shí),變量的值一定是15
B. 兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于1
C. 在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān)
D. 若某商品的銷售量(件)與銷售價(jià)格(元/件)存在線性回歸方程為,當(dāng)銷售價(jià)格為10元時(shí),銷售量為100件左右
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)和偶函數(shù)滿足:,下列結(jié)論正確的有( )
A.,且
B.,總有
C.,總有
D.,使得
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>分(含分)以上的3人與成績?yōu)?/span>分(不含分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:
分?jǐn)?shù)段 | ||||
頻率 | 0.108 | 0.133 | 0.161 | 0.183 |
分?jǐn)?shù)段 | ||||
頻率 | 0.193 | 0.154 | 0.061 | 0.007 |
(Ⅰ)試估計(jì)該次高考成績在內(nèi)文科考生的平均分(精確到);
(Ⅱ)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人組成“星隊(duì)”參加猜成語活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語,在一輪活動(dòng)中,如果兩人都猜對,則“星隊(duì)”得3分;如果只有一個(gè)人猜對,則“星隊(duì)”得1分;如果兩人都沒猜對,則“星隊(duì)”得0分。已知甲每輪猜對的概率是,乙每輪猜對的概率是;每輪活動(dòng)中甲、乙猜對與否互不影響。各輪結(jié)果亦互不影響。假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(Ⅰ)“星隊(duì)”至少猜對3個(gè)成語的概率;
(Ⅱ)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某自然資源探險(xiǎn)組織試圖穿越某峽谷,但峽谷內(nèi)被某致命昆蟲所侵?jǐn)_,為了穿越這個(gè)峽谷,該探險(xiǎn)組織進(jìn)行了詳細(xì)的調(diào)研,若每平方米的昆蟲數(shù)量記為昆蟲密度,調(diào)研發(fā)現(xiàn),在這個(gè)峽谷中,昆蟲密度是時(shí)間(單位:小時(shí))的一個(gè)連續(xù)不間斷的函數(shù)其函數(shù)表達(dá)式為
,
其中時(shí)間是午夜零點(diǎn)后的小時(shí)數(shù),為常數(shù).
(1)求的值;
(2)求出昆蟲密度的最小值和出現(xiàn)最小值的時(shí)間;
(3)若昆蟲密度不超過1250只/平方米,則昆蟲的侵?jǐn)_是非致命性的,那么在一天24小時(shí)內(nèi)哪些時(shí)間段,峽谷內(nèi)昆蟲出現(xiàn)非致命性的侵?jǐn)_.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求出函數(shù)的定義域;
(2)若當(dāng)時(shí),在上恒正,求出的取值范圍;
(3)若函數(shù)在上單調(diào)遞增,求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高二年級800名學(xué)生參加了地理學(xué)科考試,現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?/span>40分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求每個(gè)學(xué)生的成績被抽中的概率;
(2)估計(jì)這次考試地理成績的平均分和中位數(shù);
(3)估計(jì)這次地理考試全年級80分以上的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com