【題目】設(shè)橢圓)的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率.

【答案】(1);(2).

【解析】

(Ⅰ)求橢圓標準方程,只需確定,由,得,再利用,可解得,;

(Ⅱ)先化簡條件: ,即M再OA中垂線上,.設(shè)直線方程為,點可求;根據(jù),求點H,由點斜式得到直線MH方程,聯(lián)立直線和直線MH方程,求得表達式,列等量關(guān)系解出直線斜率.

解:(Ⅰ)設(shè),由,即,

可得,又,

所以,因此,所以橢圓的方程為.

(Ⅱ)設(shè),直線的斜率為,則直線的方程為,

由方程組 消去,整理得,

解得,

由題意得,從而,

設(shè),由(1)知, 有,,

,得

所以,解得,

因此直線的方程為

設(shè),由方程組 消去,得,

中, ,

,化簡得,即

解得,

所以直線的斜率為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx的圖象上有A、B兩點,其橫坐標為x1 , x2(0<x1<x2<1)且滿足f(x1)=f(x2),若k=5( + ),且k為整數(shù)時,則k的值為( )(參考數(shù)據(jù):e≈2.72)
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講
已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外以AB為直徑的半圓弧上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點到城A的距離為xkm,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當垃圾處理廠建在的 中點時,對城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷弧 上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最?若存在,求出該點到城A的距離;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0≤1
②命題“若a>2且b>2,則a+b>4且ab>4”的逆命題為假命題
③空間任意一點O和三點A,B,C,則 =3 =2 是A,B,C三點共線的充分不必要條件
④線性回歸方程y=bx+a對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(x1 , y1),(x2 , y2),…,(xn , yn)中的一個
其中不正確的個數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B是橢圓 =1和雙曲線 =1的公共頂點,其中a>b>0,P是雙曲線上的動點,M是橢圓上的動點(P,M都異于A,B),且滿足 =λ( )(λ∈R),設(shè)直線AP,BP,AM,BM的斜率分別為k1 , k2 , k3 , k4 , 若k1+k2= ,則k3+k4=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線,求:

(1)點P(4,5)關(guān)于l的對稱點;

(2)直線x-y-2=0關(guān)于直線l對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】目前,學案導學模式已經(jīng)成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:

善于使用學案

不善于使用學案

總計

學習成績優(yōu)秀

40

學習成績一般

30

總計

100

參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):

P(K2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.
(1)請將上表補充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法分析:有多大的把握認為學生的學習成績與對待學案的使用態(tài)度有關(guān)?
(3)利用分層抽樣的方法從善于使用學案的同學中隨機抽取6人,從這6人中抽出3人繼續(xù)調(diào)查,設(shè)抽出學習成績優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的參數(shù)方程為為參數(shù))

(1)求圓的直角坐標方程和直線的普通方程;

(2)若直線與圓相切,求實數(shù)的值;

查看答案和解析>>

同步練習冊答案