【題目】已知函數(shù),.
(Ⅰ)討論的單調(diào)性;
(Ⅱ)記在上最大值為,若,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ).
【解析】試題分析:
(Ⅰ)求導(dǎo)可得:,分類(lèi)討論:
①當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),函數(shù)的遞增區(qū)間有,,遞減區(qū)間有.
(Ⅱ)由(Ⅰ)知:
①當(dāng)時(shí),;
②當(dāng)即時(shí),;
③當(dāng)時(shí),分類(lèi)討論有:
當(dāng)時(shí),,∴;
當(dāng)時(shí),,∴.
據(jù)此可得若,則實(shí)數(shù)的取值范圍為.
試題解析:
(Ⅰ),
①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),令,得,
∴時(shí),;
時(shí),,
∴函數(shù)的遞增區(qū)間有,,遞減區(qū)間有.
(Ⅱ)由(Ⅰ)知:
①當(dāng)時(shí),函數(shù)在上單調(diào)遞增,此時(shí);
②當(dāng)即時(shí),,∴在單調(diào)遞減,
∴,∵,∴,即;
③當(dāng)時(shí),,
而在,遞增,在上遞減,
∴ .
由,得,令,則,
∴,即 ,∴,∴.
∴當(dāng)時(shí),,∴;
當(dāng)時(shí),,∴.
綜合①②③得:若,則實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(x﹣1)(a>0,且a≠1).
(1)若f(x)在[2,9]上的最大值與最小值之差為3,求a的值;
(2)若a>1,求不等式f(2x)>0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著共享單車(chē)的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走人大家的世界,共享汽車(chē)、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮廣元某景點(diǎn)設(shè)有共享電動(dòng)車(chē)租車(chē)點(diǎn),共享電動(dòng)車(chē)的收費(fèi)標(biāo)準(zhǔn)是每小時(shí)2元不足1小時(shí)的部分按1小時(shí)計(jì)算甲、乙兩人各租一輛電動(dòng)車(chē),若甲、乙不超過(guò)一小時(shí)還車(chē)的概率分別為;一小時(shí)以上且不超過(guò)兩小時(shí)還車(chē)的概率分別為;兩人租車(chē)時(shí)間都不會(huì)超過(guò)三小時(shí).
Ⅰ求甲、乙兩人所付租車(chē)費(fèi)用相同的概率;
Ⅱ設(shè)甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量(單位:千克)與銷(xiāo)售價(jià)格(單位:元/千克)滿(mǎn)足關(guān)系式,其中為常數(shù).已知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品13千克.
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)時(shí),若的解集為 ,且 中有且僅有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span> ,部分對(duì)應(yīng)值如下表,的導(dǎo)函數(shù)的圖象如圖所示.
下列關(guān)于的命題:
①函數(shù)的極大值點(diǎn)為;
②函數(shù)在上是減函數(shù);
③如果當(dāng)時(shí),的最大值是,那么的最大值為;
④當(dāng)時(shí),函數(shù)有個(gè)零點(diǎn);
⑤函數(shù)的零點(diǎn)個(gè)數(shù)可能為、、、、個(gè).
其中正確命題的個(gè)數(shù)是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校響應(yīng)教育部門(mén)疫情期間“停課不停學(xué)”的號(hào)召,實(shí)施網(wǎng)絡(luò)授課,為檢驗(yàn)學(xué)生上網(wǎng)課的效果,高三學(xué)年進(jìn)行了一次網(wǎng)絡(luò)模擬考試.全學(xué)年共1500人,現(xiàn)從中抽取了100人的數(shù)學(xué)成績(jī),繪制成頻率分布直方圖(如圖所示).已知這100人中分?jǐn)?shù)段的人數(shù)比分?jǐn)?shù)段的人數(shù)多6人.
(1)根據(jù)頻率分布直方圖,求a,b的值,并估計(jì)抽取的100名同學(xué)數(shù)學(xué)成績(jī)的中位數(shù);(中位數(shù)保留兩位小數(shù))
(2)現(xiàn)用分層抽樣的方法從分?jǐn)?shù)在,的兩組同學(xué)中隨機(jī)抽取6名同學(xué),從這6名同學(xué)中再任選2名同學(xué)作為“網(wǎng)絡(luò)課堂學(xué)習(xí)優(yōu)秀代表”發(fā)言,求這2名同學(xué)的分?jǐn)?shù)不在同一組內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.
(1)寫(xiě)出直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與圓相交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com