19.已知兩點A(0,-6),B(0,6),若圓(x-a)2+(y-3)2=4上任意一點P,都有∠APB為鈍角,則實數(shù)a的取值范圍是a>$\sqrt{55}$或a$<-\sqrt{55}$.

分析 要使圓(x-a)2+(y-3)2=4上任意一點P,都有∠APB為鈍角,則圓(x-a)2+(y-3)2=4與圓x2+y2=36外離即可.

解答 解:要使圓(x-a)2+(y-3)2=4上任意一點P,都有∠APB為鈍角,
則圓(x-a)2+(y-3)2=4與圓x2+y2=36外離,即圓心距大于半徑之和,
$\sqrt{{a}^{2}+{3}^{2}}>6+2$,解得a2>55,a>$\sqrt{55}$,或a$<-\sqrt{55}$.
故答案為:a>$\sqrt{55}$,或a$<-\sqrt{55}$.

點評 本題考查了圓與圓的位置關系.轉化思想是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)$f(x)=lg\frac{1-x}{1+x}$
(1)求函數(shù)的定義域并判斷其單調性;
(2)解關于x的不等式f(2x-1)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=ln(ex+e-x)+x2,則使得f(x)>f(2x-1)成立的x的取值范圍是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}的前n項和為Sn,a1=1,Sn=$\frac{{{a_{n+1}}-1}}{2}({n∈{N^*}})$,
(1)求{an}的通項公式;
(2)等差數(shù)列{bn}的各項均為正數(shù),其前n項和為Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面是矩形,PA⊥底面ABCD,PA=AD=2AB=2,E、F分別為BC與PD的中點.
(1)求證:PE⊥DE;
(2)求直線CF與平面PAC的夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設函數(shù)f(x)=2x3+3ax2+3bx在x=1及x=2時取得極值,則b的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)f(x)為定義域為R的奇函數(shù),且f(x)=f(2-x),當x∈[0,1]時,f(x)=sinx,則函數(shù)g(x)=|cos(πx)|-f(x)在區(qū)間$[-\frac{5}{2},\frac{9}{2}]$上的所有零點的和為( 。
A.6B.7C.13D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{n}{a_n}$,Sn是數(shù)列{bn}的前n項和,對任意正整數(shù)n不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知△ABC的三個內角A,B,C所對的邊分別為a,b,c,且滿足$\sqrt{3}$ccos(2016π-B)-bsin(2017π+C)=0.
(Ⅰ)求角B的大。
(Ⅱ)若點D在△ABC的外接圓上,且CD=5,△ACD的面積為5$\sqrt{3}$,求AC的長.

查看答案和解析>>

同步練習冊答案