【題目】在直角坐標系中,直線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1為曲線的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;

2)設(shè)點的極坐標為,點在曲線上,求面積的最大值及此時點坐標.

3)設(shè)直線與曲線交于點,若點的坐標為,求的值.

【答案】1;(2);;(3)2

【解析】

1)設(shè),利用可得點的極坐標方程,再轉(zhuǎn)化成直角坐標方程;

2)求出高的最大值,即可求得三角形面積的最大值,再聯(lián)立直線與圓的方程,可求得點的坐標;

3)將直線的參數(shù)方程代入圓的方程,利用參數(shù)的幾何意義,即可得答案;

1)設(shè),

為曲線的動點,,

,,

,

的直角坐標方程為.

(2)由(1)得曲線的圓心,半徑為,易得

直線的方程為,

圓心到直線的距離

底邊,高,

.

此時,點在直線與圓的交點處,

聯(lián)立方程解得:

.

3)將直線的參數(shù)方程 (為參數(shù))代入圓,

整理得:,

,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩地相距,某船從地逆水到地,水速為,船在靜水中的速度為.若船每小時的燃料費與其在靜水中速度的平方成正比,當,每小時的燃料費為元,為了使全程燃料費最省,船的實際速度應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為.

1)求這支籃球隊首次獲勝前己經(jīng)負了兩場的概率;

2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;

3)求這支籃球隊在6場比賽中獲勝場數(shù)的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))

1)若R上單調(diào)遞增,求正數(shù)a的取值范圍;

2)若fx)在處導(dǎo)數(shù)相等,證明:;

3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側(cè)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小劉同學大學畢業(yè)后自主擇業(yè),回到農(nóng)村老家發(fā)展蜜桔收購,然后賣出去,幫助村民致富.小劉打算利用互聯(lián)網(wǎng)+”的模式進行銷售.為了更好地銷售,假設(shè)該村每顆蜜柚樹結(jié)果50個,現(xiàn)隨機選了兩棵樹的蜜柚摘下來進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:千克)的個數(shù):,10,10;,15;,40;,20;,5.

1)作出其頻率分布直方圖并求其眾數(shù);

2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村蜜袖樹上大約還有100顆樹的蜜柚待出售,小劉提出兩種收購方案:

A.所有蜜柚均以16/千克收購;

B.低于2.25千克的蜜柚以22/個收購,高于或等于2.25千克的以30/個收購.請你通過計算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過定點的直線交橢圓兩點,連接并延長交,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)設(shè)男生甲被選中為事件A,女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

同步練習冊答案