【題目】在直角坐標系中,直線的參數(shù)方程為 (為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)為曲線的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;
(2)設(shè)點的極坐標為,點在曲線上,求面積的最大值及此時點坐標.
(3)設(shè)直線與曲線交于點,若點的坐標為,求的值.
【答案】(1);(2);;(3)2
【解析】
(1)設(shè),,利用可得點的極坐標方程,再轉(zhuǎn)化成直角坐標方程;
(2)求出高的最大值,即可求得三角形面積的最大值,再聯(lián)立直線與圓的方程,可求得點的坐標;
(3)將直線的參數(shù)方程代入圓的方程,利用參數(shù)的幾何意義,即可得答案;
(1)設(shè),,
為曲線的動點,,
,,
,
的直角坐標方程為.
(2)由(1)得曲線的圓心,半徑為,易得,
直線的方程為,
圓心到直線的距離,
底邊,高,
.
此時,點在直線與圓的交點處,
聯(lián)立方程解得:,
.
(3)將直線的參數(shù)方程 (為參數(shù))代入圓,
整理得:,
,.
科目:高中數(shù)學 來源: 題型:
【題目】已知兩地相距,某船從地逆水到地,水速為,船在靜水中的速度為.若船每小時的燃料費與其在靜水中速度的平方成正比,當,每小時的燃料費為元,為了使全程燃料費最省,船的實際速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為.
(1)求這支籃球隊首次獲勝前己經(jīng)負了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊在6場比賽中獲勝場數(shù)的均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))
(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;
(2)若f(x)在處導(dǎo)數(shù)相等,證明:;
(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側(cè)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小劉同學大學畢業(yè)后自主擇業(yè),回到農(nóng)村老家發(fā)展蜜桔收購,然后賣出去,幫助村民致富.小劉打算利用“互聯(lián)網(wǎng)+”的模式進行銷售.為了更好地銷售,假設(shè)該村每顆蜜柚樹結(jié)果50個,現(xiàn)隨機選了兩棵樹的蜜柚摘下來進行測重,其質(zhì)量分布在區(qū)間內(nèi)(單位:千克)的個數(shù):,10;,10;,15;,40;,20;,5.
(1)作出其頻率分布直方圖并求其眾數(shù);
(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村蜜袖樹上大約還有100顆樹的蜜柚待出售,小劉提出兩種收購方案:
A.所有蜜柚均以16元/千克收購;
B.低于2.25千克的蜜柚以22元/個收購,高于或等于2.25千克的以30元/個收購.請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于兩點,連接并延長交于,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com