分析 由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=12-|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,把|AB|的最小值$\frac{2^{2}}{3}$代入|BF2|+|AF2|=12-|AB|,由|BF2|+|AF2|的最大值等于8列式求b的值.
解答 解:由0<b<3可知,焦點在x軸上,
∵過F1的直線l交橢圓于A,B兩點,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=12,
∴|BF2|+|AF2|=12-|AB|.
當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,
此時|AB|=$\frac{2^{2}}{3}$,∴8=12-$\frac{2^{2}}{3}$,
解得b=$\sqrt{6}$.
故答案為:$\sqrt{6}$.
點評 本題考查了直線與圓錐曲線的關(guān)系,考查了橢圓的定義,解答此題的關(guān)鍵是明確過橢圓焦點的弦中通徑的長最短,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R,cosx0>1 | B. | ?x∈R,cosx>1 | C. | ?x∈R,cos≤1 | D. | ?x0∈R,cosx≥1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1 x2<0 | B. | x1 x2=1 | C. | x1x2>1 | D. | 0<x1 x2<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2014}{2015}$ | B. | $\frac{2015}{2016}$ | C. | $\frac{2014}{2013}$ | D. | $\frac{2015}{2014}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com