【題目】設x,y滿足約束條件: ;則z=x﹣2y的取值范圍為 .
【答案】[﹣3,3]
【解析】解:作出不等式組表示的平面區(qū)域 由z=x﹣2y可得,y= ,則﹣ 表示直線x﹣2y﹣z=0在y軸上的截距,截距越大,z越小
結合函數的圖形可知,當直線x﹣2y﹣z=0平移到B時,截距最大,z最。划斨本x﹣2y﹣z=0平移到A時,截距最小,z最大
由 可得B(1,2),由 可得A(3,0)
∴Zmax=3,Zmin=﹣3
則z=x﹣2y∈[﹣3,3]
故答案為:[﹣3,3]
先作出不等式組表示的平面區(qū)域,由z=x﹣2y可得,y= ,則﹣ 表示直線x﹣2y﹣z=0在y軸上的截距,截距越大,z越小,結合函數的圖形可求z的最大與最小值,從而可求z的范圍.
科目:高中數學 來源: 題型:
【題目】如圖所示,某人在M汽車站的北偏西20°的方向上的A處,觀察到點C處有一輛汽車沿公路向M站行駛,公路的走向是M站的北偏東40°,開始時,汽車到A的距離為31千米,汽車前進20千米后,到A的距離縮短了10千米.問汽車還需行駛多遠,才能到達M汽車站?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理健康教育老師對某班50個學生進行了心里健康測評,測評成績滿分為100分.成績出來后,老師對每個成績段的人數進行了統(tǒng)計,并得到如圖4所示的頻率分布直方圖.
(1)求a,并從頻率分布直方圖中求出成績的眾數和中位數;
(2)若老師從60分以下的人中選兩個出來與之聊天,則這兩人一個在(40,50]這一段,另一個在(50,60]這一段的概率是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)過點( ,﹣ ),且離心率為 . (Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點A(x1 , y1),B(x2 , y2)是橢圓C上的亮點,且x1≠x2 , 點P(1,0),證明:△PAB不可能為等邊三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列敘述: ①函數 是奇函數;
②函數 的一條對稱軸方程為 ;
③函數 , ,則f(x)的值域為 ;
④函數 有最小值,無最大值.
所有正確結論的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=6cos2 + sinωx﹣3(ω>0)在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且△ABC為正三角形.
(1)求ω的值及函數f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ , ),求f(x0+1)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了了解初三女生身高情況,某中學對初三女生身高情況進行了一次測量,所得數據整理后列出了頻率分布表如下:
組別 | 頻數 | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合計 | M | N |
(1)求出表中m,n,M,N所表示的數分別是多少?
(2)畫出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內的人數最多?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com