【題目】設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(diǎn)(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

【答案】
(1)

【解答】

解:由題意: 解得


(2)

【解答】

解:f'(x)=3x2-6x+9=3(x2-2x+3)=3(x-3)(x+1)

當(dāng) x<-1 或 x>3 時(shí), f'(x)>0 , 所以f(x) 的單調(diào)遞增區(qū)間為

當(dāng) -1<x<3 時(shí), f'(x)<0 , 所以f(x) 的單調(diào)遞減區(qū)間為 (-1,3)


【解析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解決問題的關(guān)鍵是根據(jù)導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,屬基礎(chǔ)題
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x+ 有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)(0, ]上是減函數(shù),在[ ,+∞)上是增函數(shù).
(1)已知f(x)= ,g(x)=﹣x﹣2a,x∈[0,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域.
(2)對于(1)中的函數(shù)f(x)和函數(shù)g(x),若對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間(﹣1,1)上的偶函數(shù)f(x),在(0,1)上為增函數(shù),f(a﹣2)﹣f(4﹣a2)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若處與直線相切,求的值;

2)在(1)的條件下,求上的最大值;

3)若不等式對所有的都成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y=f(x)經(jīng)過點(diǎn)(2, ).
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(2,8),B(x1 , y1),C(x2 , y2)在拋物線 上,△ABC的重心與此拋物線的焦點(diǎn)F重合(如圖)

(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);
(2)求線段BC中點(diǎn)M的坐標(biāo);
(3)求BC所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與拋物線交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于Q點(diǎn).

(1)求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P為拋物線上位于線段AB下方(含A、B)的動點(diǎn)時(shí),求ΔOPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

已知直線l:ρsin(θ+)=m,曲線C:

(1)當(dāng)m=3時(shí),判斷直線l與曲線C的位置關(guān)系;

(2)若曲線C上存在到直線l的距離等于的點(diǎn),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A′B′C′D′中,E是棱BC的中點(diǎn),G是棱DD′的中點(diǎn),則異面直線GB與B′E所成的角為(

A.120°
B.90°
C.60°
D.30°

查看答案和解析>>

同步練習(xí)冊答案