【題目】如圖,直線與拋物線交于A、B兩點(diǎn),線段AB的垂直平分線與直線y=-5交于Q點(diǎn).

(1)求點(diǎn)Q的坐標(biāo);
(2)當(dāng)P為拋物線上位于線段AB下方(含A、B)的動(dòng)點(diǎn)時(shí),求ΔOPQ面積的最大值.

【答案】
(1)

【解答】解方程組

即A(-4,-2),B(8,4),從而AB的中點(diǎn)為M(2,1).由kAB= ,直線AB的垂直平分線方程

y-1= (x-2).令y=-5,得x=5,∴Q(5,-5).


(2)

【解答】直線OQ的方程為x+y=0,設(shè)P(x, x2-4).∵點(diǎn)P到直線OQ的距離 ,

,

.

∵P為拋物線上位于線段AB下方的點(diǎn),且P不在直線OQ上,∴-4≤x<4 -4或4 -4<x≤8.

∵函數(shù)y=x2+8x-32在區(qū)間[-4,8]上單調(diào)遞增,∴當(dāng)x=8時(shí),ΔOPQ的面積取到最大值30.


【解析】(1)把直線方程拋物線方程聯(lián)立求得交點(diǎn)A,B的坐標(biāo),則AB中點(diǎn)M的坐標(biāo)可得,利用AB的斜率推斷出AB垂直平分線的斜率,進(jìn)而求得AB垂直平分線的方程,把y=-5代入求得Q的坐標(biāo).(2)設(shè)出P的坐標(biāo),利用P到直線0Q的距離求得三角形的高,利用兩點(diǎn)間的距離公式求得QO的長,最后利用三角形面積公式表示出三角形OPQ,利用x的范圍和二次函數(shù)的單調(diào)性求得三角形面積的最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)在R上可導(dǎo)且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是(
A.af(a)>bf(b)
B.af(b)>bf(a)
C.af(a)<bf(b)
D.af(b)<bf(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在高二年級開設(shè)大學(xué)選修課程《線性代數(shù)》,共有名同學(xué)選修,其中男同學(xué)名,女同學(xué).為了對這門課程的教學(xué)效果進(jìn)行評估,學(xué)校按性別采取分層抽樣的方法抽取人進(jìn)行考核.

1)求抽取的人中男、女同學(xué)的人數(shù);

2)考核前,評估小組打算從選出的中隨機(jī)選出名同學(xué)進(jìn)行訪談,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

3)考核分答辯和筆試兩項(xiàng). 位同學(xué)的筆試成績分別為;結(jié)合答辯情況,他們的考核成績分別為.位同學(xué)筆試成績與考核成績的方差分別記為,試比較的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(diǎn)(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線lx軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心, |CO| 為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,M,N,K分別是正方體ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).

(1)求證:AN∥平面A1MK;
(2)求證:平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a∈R).

(1)若曲線g(x)=f(x)+x上點(diǎn)(1,g(1))處的切線過點(diǎn)(0,2),求函數(shù)g(x)的單調(diào)減區(qū)間;

(2)若函數(shù)y=f(x)在區(qū)間(0, )內(nèi)無零點(diǎn),求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2x a)的定義域?yàn)镽;命題q:不等式3x-9x<a對一切正實(shí)數(shù)均成立.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0<a<1,f(x)=ax , g(x)=logax,h(x)= ,當(dāng)x>1時(shí),則有(
A.f(x)<g(x)<h(x)
B.g(x)<f(x)<h(x)
C.g(x)<h(x)<f(x)
D.h(x)<g(x)<f(x)

查看答案和解析>>

同步練習(xí)冊答案