13.(1)求值:2cos215°
(2)化簡:$\frac{1}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$.

分析 (1)利用2cos2α=1+cos2α,可得答案.
(2)利用和與差的公式化簡即可.

解答 解:(1)由2cos2α=1+cos2α,
∴2cos215°=1+cos30°=$\frac{2+\sqrt{3}}{2}$
(2)$\frac{1}{2}cosx-\frac{{\sqrt{3}}}{2}sinx$=cos60°cosx-sin60°sinx=cos(60°+x)

點(diǎn)評 本題考查了二倍角和和與差公式的化解和運(yùn)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}滿足a1=1,2${\;}^{{a}_{n+1}}$=3×2${\;}^{{a}_{n}}$+2(n∈N*),若an>4log23恒成立,則n的最小值為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則x=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知數(shù)列A:a1,a2,a3,a4,a5,其中ai∈{-1,0,1},i=1,2,3,4,5,則滿足條件:a1+a2+a3+a4+a5=3的不同數(shù)列A一共有15個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)$f(x)=2\sqrt{3}sinxcosx+2{cos^2}x+a-1(a∈R,a是常數(shù))$
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)$若f(x)在[{-\frac{π}{4},\frac{π}{4}}]上的最大值與最小值之和為\sqrt{3},求實數(shù)a的值$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)定義域為R的函數(shù)f(x)滿足f(x+1)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,且$f(-1)=\frac{1}{2}$,則f(2017)的值為( 。
A.-1B.$\frac{1}{2}$C.1D.2017

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在區(qū)間[0,π]上隨機(jī)取一實數(shù)x,則事件“$\frac{{\sqrt{2}}}{2}≤sinx≤\frac{{\sqrt{3}}}{2}$”發(fā)生的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{12}$C.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.兩條平行直線3x+4y-9=0和3x+4y+1=0的距離是( 。
A.$\frac{8}{5}$B.2C.$\frac{11}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)在R上連續(xù)可導(dǎo),對任意x∈R,有f(-x)+f(x)=cos2x,當(dāng)x∈(0,+∞)時,f(x)+sin2x>0,若f(m)-f($\frac{π}{2}$-m)-cos2m>0,則實數(shù)m的取值范圍為(  )
A.($\frac{π}{4}$,+∞)B.(-∞,$\frac{π}{4}$)C.(0,$\frac{π}{4}$)D.(-$\frac{π}{4}$,$\frac{π}{4}$)

查看答案和解析>>

同步練習(xí)冊答案