3.已知向量$\overrightarrow{m}$=(λ,1),$\overrightarrow{n}$=(λ+1,2),若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),則λ=(  )
A.1B.0C.-1D.-2

分析 由條件利用兩個(gè)向量的數(shù)量積公式,兩個(gè)向量垂直的性質(zhì),求得λ的值.

解答 解:∵向量$\overrightarrow{m}$=(λ,1),$\overrightarrow{n}$=(λ+1,2),若($\overrightarrow{m}$+$\overrightarrow{n}$)⊥($\overrightarrow{m}$-$\overrightarrow{n}$),
則($\overrightarrow{m}$+$\overrightarrow{n}$)•($\overrightarrow{m}$-$\overrightarrow{n}$)=${\overrightarrow{m}}^{2}$-${\overrightarrow{n}}^{2}$=λ2+1-[(λ+1)2+4]=0,求得λ=-2,
故選:D.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積公式,兩個(gè)向量垂直的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某大學(xué)生從全校學(xué)生中隨機(jī)選取100名統(tǒng)計(jì)他們的鞋碼大小,得到如下數(shù)據(jù):
 鞋碼 35 36 37 38 39 40 4142  4344  合計(jì)
 男生-- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
以各性別各鞋碼出現(xiàn)的頻率為概率.
(1)從該校隨機(jī)挑選一名學(xué)生,求他(她)的鞋碼為奇數(shù)的概率;
(2)為了解該校學(xué)生考試作弊的情況,從該校隨機(jī)挑選120名學(xué)生進(jìn)行抽樣調(diào)查.每位學(xué)生從裝有除顏色外無(wú)差別的4個(gè)紅球和6個(gè)白球的口袋中,隨機(jī)摸出兩個(gè)球,若同色,則如實(shí)回答其鞋碼是否為奇數(shù);若不同色,則如實(shí)回答是否曾在考試中作弊.這里的回答,是指在紙上寫(xiě)下“是”或“否”.若調(diào)查人員回收到32張“是”的小紙條,試估計(jì)該校學(xué)生在考試中曾有作弊行為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)y=f(x)(x∈R)上任一點(diǎn)(x0,f(x0)),且在該點(diǎn)處的切線斜率為k=a(x0-1)(x0+2)2(a<0),則該函數(shù)的單調(diào)遞減區(qū)間為( 。
A.[1,+∞)B.(-∞,1]C.(-2,1)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=loga(2x-3)-4(a>0且a≠1)的圖象恒過(guò)定點(diǎn)( 。
A.(1,0)B.(1,-4)C.(2,0)D.(2,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)=loga(ax-t)(a>0且a≠1)在區(qū)間[$\frac{m}{2}$,$\frac{n}{2}$]上的值域?yàn)閇m,n],則實(shí)數(shù)t的取值范圍是( 。
A.(0,1)B.($\frac{1}{4}$,$\frac{1}{2}$)C.(0,$\frac{1}{4}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,過(guò)函數(shù)f(x)=logcx(c>1)的圖象上的兩點(diǎn)A,B作x軸的垂線,垂足分別為M(a,0),N(b,0)(b>a>1),線段BN與函數(shù)g(x)=logmx(m>c>1)的圖象交于點(diǎn)C,且AC與x軸平行.
(1)當(dāng)a=2,b=4,c=3時(shí),求實(shí)數(shù)m的值;
(2)當(dāng)b=a2時(shí),求$\frac{m}$-$\frac{2c}{a}$的最小值;
(3)已知h(x)=ax,φ(x)=bx,若x1,x2為區(qū)間(a,b)任意兩個(gè)變量,且x1<x2,求證:h(f(x2))<φ(f(x1))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.計(jì)算sin46°•cos16°-cos314°•sin16°=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.工人工資y(元)與勞動(dòng)生產(chǎn)率x(千元)的相關(guān)關(guān)系的回歸直線方程為$\widehat{y}$=50+80x,下列判斷正確的是( 。
A.勞動(dòng)生產(chǎn)率為1 000元時(shí),工人工資為130元
B.勞動(dòng)生產(chǎn)率提高1 000元時(shí),工人工資平均提高80元
C.勞動(dòng)生產(chǎn)率提高1 000元時(shí),工人工資平均提高130元
D.當(dāng)月工資為250元時(shí),勞動(dòng)生產(chǎn)率為2 000元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過(guò)右焦點(diǎn)且斜率為1的直線交橢圓于A、B兩點(diǎn).
(1)證明:$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{m}$=(a2,-1)共線;
(2)設(shè)$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,當(dāng)μ22=1且M在橢圓上時(shí),求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案