分析 確定函數(shù)的定義域,然后討論內(nèi)外函數(shù)的單調(diào)性,進而根據(jù)復合函數(shù)單調(diào)性“同增異減”的原則,得到函數(shù)f(x)=2${\;}^{\sqrt{-{x}^{2}+x+6}}$的單調(diào)遞增區(qū)間.
解答 解:由-x2+x+6≥0,可得-2≤x≤3.
-x2+x+6=-(x-$\frac{1}{2}$)2+$\frac{25}{4}$,在[-2,$\frac{1}{2}$]上單調(diào)遞增,[$\frac{1}{2}$,3]上單調(diào)遞減,
∴函數(shù)f(x)=2${\;}^{\sqrt{-{x}^{2}+x+6}}$的單調(diào)遞增區(qū)間為[-2,$\frac{1}{2}$].
故答案為:[-2,$\frac{1}{2}$].
點評 本題考查的知識點是復合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性,其中復合函數(shù)單調(diào)性“同增異減”是解答本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{k}{\sqrt{1+{k}^{2}}}$ | B. | $\frac{1}{\sqrt{1+{k}^{2}}}$ | C. | -$\frac{k}{\sqrt{1+{k}^{2}}}$ | D. | -$\frac{1}{\sqrt{1+{k}^{2}}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com