【題目】某省為了確定合理的階梯電價(jià)分檔方案,對(duì)全省居民用量進(jìn)行了一次抽樣調(diào)查,得到居民月用電量(單位:度)的頻率分布直方圖(如圖所示),求:

1)若要求80%的居民能按基本檔的電量收費(fèi),則基本檔的月用電量應(yīng)定為多少度?

2)由頻率分布直方圖可估計(jì),居民月用電量的眾數(shù)、中位數(shù)和平均數(shù)分別是多少?

【答案】1160度;(2150,145,144.

【解析】

1)計(jì)算頻率達(dá)到時(shí)的電量.

1)頻率分布直方圖中估計(jì)眾數(shù)用最高矩形的中點(diǎn)值,中位數(shù)左右兩側(cè)的頻率相等,平均數(shù)為每組的組中值與對(duì)應(yīng)的頻率之積的和;

解:(1)∵

∴基本檔的月用電量應(yīng)定為160度.

2)①由圖可知,居民用電量的眾數(shù)為

②設(shè)居民月用電量的中位數(shù)為,解

③平均數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若滿足條件:存在區(qū)間,使上的值域?yàn)?/span>,則稱不動(dòng)函數(shù)”.

1)求證:函數(shù)不動(dòng)函數(shù);

2)若函數(shù)不動(dòng)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若動(dòng)圓與圓外切,且與直線相切,則動(dòng)圓圓心的軌跡方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn),且法向量為的直線(點(diǎn)法式)方程為:,化簡(jiǎn)得.類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn),且法向量為的平面的方程為(。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的函數(shù).

(Ⅰ)若為單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;

(Ⅱ)討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);

2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;

3)在(2)的條件下,記g(x)的四個(gè)零點(diǎn)分別為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),解不等式;

2)畫出該函數(shù)的圖象,并寫出該函數(shù)的單調(diào)區(qū)間(不用證明);

3)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)滿足又定義域?yàn)閷?shí)數(shù)集R的函數(shù) 是奇函數(shù)

確定的解析式;

的值;

若對(duì)任意的R,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案