【題目】設(shè)函數(shù)

求函數(shù)的單調(diào)區(qū)間和極值.

若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

【答案】(1)見解析; (2)

【解析】

求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間和極值即可;

通過討論a的范圍,若滿足在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),需滿足,解出即可.

,得,

當(dāng)時(shí),,函數(shù)上單調(diào)遞增,函數(shù)無極大值,也無極小值;

當(dāng)時(shí),由,得舍去

于是,當(dāng)x變化時(shí),的變化情況如下表:

x

0

遞減

遞增

所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

函數(shù)處取得極小值,無極大值.

綜上可知,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,函數(shù)既無極大值也無極小值;

當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間為,

函數(shù)有極小值,無極大值.

當(dāng)時(shí),由知函數(shù)在區(qū)間上單調(diào)遞增,

故函數(shù)在區(qū)間上至多有一個(gè)零點(diǎn),不合題意.

當(dāng)時(shí),由知,當(dāng)時(shí),函數(shù)單調(diào)遞減;

當(dāng)時(shí),函數(shù)單調(diào)遞增,

所以函數(shù)上的最小值為

若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),

則需滿足,即整理得,所以

故所求a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題正確的是(

①線性相關(guān)系數(shù)越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱;

②殘差平方和越小的模型,擬合的效果越好;

③用相關(guān)指數(shù)來刻畫回歸效果,越小,說明模型的擬合的效果越好;

④隨機(jī)誤差是衡量預(yù)報(bào)精確度的一個(gè)量,它滿足.

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)方程為,直線l的參數(shù)方程為為參數(shù)

,直線lx軸的交點(diǎn)為MN是圓C上一動(dòng)點(diǎn),求的最小值;

若直線l被圓C截得的弦長(zhǎng)等于圓C的半徑,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<2,函數(shù)f(x)(x2axa)ex.

1)當(dāng)a1時(shí),求f(x)的單調(diào)遞增區(qū)間;

2)若f(x)的極大值是6e-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018115日上午,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)拉開大幕,這是中國(guó)也是世界上首次以進(jìn)口為主題的國(guó)家級(jí)博覽會(huì),本次博覽會(huì)包括企業(yè)產(chǎn)品展、國(guó)家貿(mào)易投資展,其中企業(yè)產(chǎn)品展分為7個(gè)展區(qū),每個(gè)展區(qū)統(tǒng)計(jì)了備受關(guān)注百分比,如下表:

展區(qū)類型

智能及高端裝備

消費(fèi)電子及家電

汽車

服裝服飾及日用消費(fèi)品

食品及農(nóng)產(chǎn)品

醫(yī)療器械及醫(yī)藥保健

服務(wù)貿(mào)易

展區(qū)的企業(yè)數(shù)

400

60

70

650

1670

300

450

備受關(guān)注百分比

備受關(guān)注百分比指:一個(gè)展區(qū)中受到所有相關(guān)人士關(guān)注簡(jiǎn)稱備受關(guān)注的企業(yè)數(shù)與該展區(qū)的企業(yè)數(shù)的比值.

(1)從企業(yè)產(chǎn)品展7個(gè)展區(qū)的企業(yè)中隨機(jī)選取1家,求這家企業(yè)是選自“智能及高端裝備”展區(qū)備受關(guān)注的企業(yè)的概率;

(2)某電視臺(tái)采用分層抽樣的方法,在“消費(fèi)電子及家電”展區(qū)備受關(guān)注的企業(yè)和“醫(yī)療器械及醫(yī)藥保健”展區(qū)備受關(guān)注的企業(yè)中抽取6家進(jìn)行了采訪,若從受訪企業(yè)中隨機(jī)抽取2家進(jìn)行產(chǎn)品展示,求恰有1家來自于“醫(yī)療器械及醫(yī)藥保健”展區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).① 若,則的極小值為___; ② 若存在使得方程無實(shí)根,則的取值范圍是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,頂點(diǎn)為原點(diǎn)的拋物線,它是焦點(diǎn)為橢圓的右焦點(diǎn).

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過拋物線的焦點(diǎn)作互相垂直的兩條直線分別交拋物線四點(diǎn),求四邊形的面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案