【題目】已知a<2,函數(shù)f(x)(x2axa)ex.

1)當(dāng)a1時(shí),求f(x)的單調(diào)遞增區(qū)間;

2)若f(x)的極大值是6e-2,求a的值.

【答案】1的單調(diào)增區(qū)間是2

【解析】

1定義域?yàn)?/span>R所以的單調(diào)增區(qū)間為2-2,-a有可能是的極值點(diǎn),列表判斷出時(shí)取得極大值且極大值是列方程求出a.函數(shù)的單調(diào)性與導(dǎo)數(shù),函數(shù)的極值

試題解析:(1)當(dāng)a1時(shí),f(x)(x2x1)ex,f′(x)(x23x2)ex.

f′(x)≥0,得x23x2≥0,解得x2x1.

f(x)的單調(diào)遞增區(qū)間是(,-2][1,+∞)

2f′(x)[x2(a2)x2a]ex.f′(x)0,得x=-2x=-a.

a<2,a>2.

當(dāng)x變化時(shí),f′(x),f(x)變化情況列表如下:

x=-2時(shí),f(x)取得極大值.而f(2)(4ae2,

∴(4a)e2e2.∴a=-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證:

(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測(cè)重,其質(zhì)量分別在,,,,,單位:克中,其頻率分布直方圖如圖所示.

按分層抽樣的方法從質(zhì)量落在,的蜜柚中抽取5個(gè),再?gòu)倪@5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;

以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購(gòu)方案:

A.所有蜜柚均以40元千克收購(gòu);

B.低于2250克的蜜柚以60元個(gè)收購(gòu),高于或等于2250克的以80元個(gè)收購(gòu).

請(qǐng)你通過計(jì)算為該村選擇收益最好的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;

某校高三一級(jí)部和二級(jí)部的人數(shù)分別是m、n,本次期末考試兩級(jí)部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級(jí)部的數(shù)學(xué)平均分為

某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001800進(jìn)行編號(hào),已知從497--51216個(gè)數(shù)中取得的學(xué)生編號(hào)是503,則初始在第1小組00l016中隨機(jī)抽到的學(xué)生編號(hào)是007

其中命題正確的個(gè)數(shù)是

A0個(gè) B1個(gè) C2個(gè) D3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

求函數(shù)的單調(diào)區(qū)間和極值.

若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<2,函數(shù)f(x)(x2axa)ex.

1)當(dāng)a1時(shí),求f(x)的單調(diào)遞增區(qū)間;

2)若f(x)的極大值是6e-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

的單調(diào)區(qū)間;

當(dāng)時(shí),若對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;

證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于、兩點(diǎn),若存在點(diǎn)使得為等邊三角形,則( )

A. 8 B. 10 C. 12 D. 14

查看答案和解析>>

同步練習(xí)冊(cè)答案