15.直線y=kx+3(k≠0)與圓(x-3)2+(y-2)2=4相交于A、B兩點,若$|AB|=2\sqrt{3}$,則k的值為$-\frac{3}{4}$.

分析 由弦長公式得,當圓心到直線的距離等于1時,弦長$|AB|=2\sqrt{3}$,解此方程求出k的取值即可.

解答 解:圓(x-3)2+(y-2)2=4圓心坐標(3,2),半徑為2,
因為直線y=kx+3與圓(x-3)2+(y-2)2=4相交于A、B兩點,$|AB|=2\sqrt{3}$,
由弦長公式得,圓心到直線的距離等于1,
即$\frac{|3k-2+3|}{\sqrt{1+{k}^{2}}}$=1,8k(k+$\frac{3}{4}$)=0,
得:k=-$\frac{3}{4}$,
故答案為:$-\frac{3}{4}$.

點評 本題考查圓心到直線的距離公式的應用,以及弦長公式的應用.考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0}),{F_1}$為左焦點,A為右頂點,B1,B2分別為上、下頂點,若F1,A,B1,B2四點在同一圓上,則此橢圓的離心率為(  )
A.$\frac{{\sqrt{3}-1}}{2}$B.$\frac{{\sqrt{5}-1}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知雙曲線與橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦點,且其中一條漸近線為$y=\frac{3}{2}x$,則該雙曲線的標準方程是$\frac{x^2}{4}-\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.${(\frac{1}{2x}-\sqrt{x})^9}$的展開式中的常數(shù)項為$\frac{21}{2}$.(用數(shù)學作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖的三視圖所對應的立體圖形可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)經過點A(2,3),離心率$e=\frac{1}{2}$.
(1)求橢圓E的方程;
(2)若∠F1AF2的角平分線所在的直線l與橢圓E的另一個交點為B,C為橢圓E上的一點,當△ABC的面積最大時,求C點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知圓C:x2+y2=4上所有的點滿足約束條件$\left\{\begin{array}{l}{x+y+4≥0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,當m取最小值時,可行域(不等式組所圍成的平面區(qū)域)的面積為(  )
A.48B.54C.24$\sqrt{2}$D.36$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.200件產品有5件次品,先從中任意抽去5間,其中至少有2件次品的抽法有( 。
A.A${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$種
B.C${\;}_{3}^{2}$C${\;}_{198}^{3}$種
C.C${\;}_{200}^{5}$-C${\;}_{197}^{5}$種
D.C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求f(x)的定義域.
(2)若f(a)=2,求a的值;
(3)求證:f($\frac{1}{x}$)=-f(x)

查看答案和解析>>

同步練習冊答案