6.已知全集U={-2,0,1,2},集合A={x|x2+x-2=0},則∁UA=( 。
A.{-2,1}B.{-2,0}C.{0,2}D.{0,1}

分析 由題意求出集合A,然后直接寫出它的補(bǔ)集即可.

解答 解:全集U={-2,0,1,2},集合A={x|x2+x-2=0}={-2,1},
則∁UA={0,2}
故選:C.

點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,補(bǔ)集的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+5y≤8}\end{array}\right.$,則z=$\frac{y}{x-2}$的取值范圍為[-1,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足a1=2,且nan+1-(n+1)an=n(n+1)
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知bn=(n+1)2,求證:$\frac{1}{{a}_{1}+_{1}}$+$\frac{1}{{a}_{2}+_{2}}$+…+$\frac{1}{{a}_{n}+_{n}}$$<\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.復(fù)數(shù)z=(a+i)(1-i),a∈R,i是虛數(shù)單位.若|z|=2,則a=( 。
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},0<x≤4}\\{lo{g}_{4}x,x>4}\end{array}\right.$,f(f(-16))=(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若sin($\frac{π}{2}$+α)=-$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),則sin(π-2α)=(  )
A.$\frac{24}{25}$B.$\frac{12}{25}$C.-$\frac{12}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.為了得到函數(shù)y=3cos2x的圖象,只需把函數(shù)y=3sin(2x+$\frac{π}{3}$)的圖象上所有的點(diǎn)(  )
A.向右平行移動(dòng)$\frac{π}{12}$個(gè)單位長(zhǎng)度B.向右平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向左平行移動(dòng)$\frac{π}{12}$個(gè)單位長(zhǎng)度D.向左平移移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)若函數(shù)f(x)=4x3-ax+3的單調(diào)遞減區(qū)間是[-$\frac{1}{2}$,$\frac{1}{2}$],則實(shí)數(shù)a的值是多少?
(2)若函數(shù)f(x)=4x3-ax+3在[-$\frac{1}{2}$,$\frac{1}{2}$]上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.1000名考生的某次成績(jī)近似服從正態(tài)分布N(530,502),則成績(jī)?cè)?30分以上的考生人數(shù)約為23.(注:正態(tài)總體N(μ,σ2)在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)取值的概率分別為0.683,0.954,0.997)

查看答案和解析>>

同步練習(xí)冊(cè)答案