分析 由已知及余弦定理可得c2+a2-b2=$\sqrt{3}ac$,進而利用余弦定理可求cosB=$\frac{\sqrt{3}}{2}$,結合范圍B∈(0,π),即可得解B的值.
解答 解:∵2bcosA=2c-$\sqrt{3}$a,
∴cosA=$\frac{2c-\sqrt{3}a}{2b}$=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,整理可得:c2+a2-b2=$\sqrt{3}ac$,
∴cosB=$\frac{{c}^{2}+{a}^{2}-^{2}}{2ac}$=$\frac{\sqrt{3}ac}{2ac}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),
∴B=$\frac{π}{6}$.
故答案為:$\frac{π}{6}$.
點評 本題主要考查了余弦定理,特殊角的三角函數(shù)值在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,e) | B. | (-∞,e] | C. | $(-∞,\frac{1}{e})$ | D. | $(-∞,\frac{1}{e}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,+∞) | B. | (4,+∞) | C. | (-∞,-2] | D. | (-∞,4] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com