命題“若a>0,則ac2≥0”的逆命題是(  )
A、若a>0,則ac2<0
B、若ac2≥0,則a>0
C、若ac2<0,則a≤0
D、若a≤0,則ac2<0
考點:四種命題
專題:簡易邏輯
分析:利用逆命題的定義即可得出.
解答: 解:命題“若a>0,則ac2≥0”的逆命題是:若ac2≥0,則a>0.
故選:B.
點評:本題考查了逆命題的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中,正確的是
 

①任取x∈R都有3x>2x  
②當(dāng)a>1時,任取x∈R都有ax>a-x 
③y=(
3
-x是增函數(shù)
④y=2|x|的最小值為1  
⑤在同一坐標(biāo)系中,y=2x與y=2-x的圖象對稱于y軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)在[0,7]上是減函數(shù),則f(x)( 。
A、在[-7,0]上是增函數(shù)
B、在[-7,0]上是減函數(shù)
C、在[7,+∞)上是減函數(shù)
D、在[-7,7]是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

0
(-sinx)dx=(  )
A、0B、2C、-2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x-a
x2+2
(x∈R)在區(qū)間[-1,1]上是增函數(shù),實數(shù)a組成集合A,設(shè)關(guān)于x的方程f(x)=
1
x
的兩個非零實根x1,x2,實數(shù)m使得不等式m2+tm+1≥|x1-x2|使得對任意a∈A及t∈[-1,1]恒成立,則m的解集是( 。
A、(-∞,-2]∪[2,+∞)
B、(-∞,2.5)∪(2.5,+∞)
C、(-2.5,2.5)
D、(-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-2x,g(x)=x2-4x+3,若關(guān)于x的方程f(x)=g(a)總有解,則實數(shù)a的取值范圍為( 。
A、[2-
2
,2+
2
]
B、(2-
2
,2+
2
C、[1,3]
D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sinx,x∈[
π
2
2
]和y=±2的圖象圍成了一個封閉圖形,此封閉圖形的面積是(  )
A、4B、2πC、4πD、8π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在算法中,流程圖有三大基本結(jié)構(gòu),以下哪個不在其中(  )
A、順序結(jié)構(gòu)B、選擇結(jié)構(gòu)
C、判斷結(jié)構(gòu)D、循環(huán)結(jié)構(gòu)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=
1
x+1
},B={x|y=loga(x+2)},則集合(∁UA)∩B=(  )
A、(-2,-1)
B、(-2,-1]
C、(-∞,-2)
D、(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案