分析 (1)根據(jù)絕對值不等式的解法,求解即可.
(2)求出m+n=2,利用1的代換,結(jié)合基本不等式求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的最小值.
解答 解:(1)由f(x)<2知|2x-1|<2,
于是-2<2x-1<2,
解得$-\frac{1}{2}<x<\frac{3}{2}$,
故不等式f(x)<2的解集為$(-\frac{1}{2},\frac{3}{2})$.
(2)由條件得g(x)=|2x-1|+|2x-3|≥|2x-1-(2x-3)|=2,
當且僅當$x∈[\frac{1}{2},\frac{3}{2}]$時,其最小值a=2,
即m+n=2.
又$\frac{2}{m}+\frac{1}{n}=\frac{1}{2}(m+n)(\frac{2}{m}+\frac{1}{n})=\frac{1}{2}(3+\frac{2n}{m}+\frac{m}{n})≥\frac{1}{2}(3+2\sqrt{2})$,
所以$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}=m+n+\frac{2}{m}+\frac{1}{n}≥2+\frac{1}{2}(3+2\sqrt{2})=\frac{{7+2\sqrt{2}}}{2}$,
故$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的最小值為$\frac{{7+2\sqrt{2}}}{2}$,
此時$m=4-2\sqrt{2}$,$n=2\sqrt{2}-2$.
點評 本題主要考查絕對值不等式的解法,以及不等式恒成立問題,利用1的代換結(jié)合基本不等式,將不等式恒成立進行轉(zhuǎn)化求解是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | θ=$\frac{π}{4}$(ρ∈R) | B. | θ=$\frac{5π}{4}$(ρ≤0) | C. | θ=$\frac{5π}{4}$(ρ∈R) | D. | θ=$\frac{π}{4}$(ρ≤0) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com