2.與方程θ=$\frac{π}{4}$(ρ≥0)表示同一曲線的是(  )
A.θ=$\frac{π}{4}$(ρ∈R)B.θ=$\frac{5π}{4}$(ρ≤0)C.θ=$\frac{5π}{4}$(ρ∈R)D.θ=$\frac{π}{4}$(ρ≤0)

分析 方程θ=$\frac{π}{4}$(ρ≥0)表示過極點且與極軸的夾角為$\frac{π}{4}$的射線,進而得出答案.

解答 解:方程θ=$\frac{π}{4}$(ρ≥0)表示過極點且與極軸的夾角為$\frac{π}{4}$的射線,而$θ=\frac{5π}{4}$(ρ≤0)也表示此曲線.
故選:B.

點評 本題考查了極坐標的應用,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=|2x-1|.
(1)求不等式f(x)<2;
(2)若函數(shù)g(x)=f(x)+f(x-1)的最小值為a,且m+n=a(m>0,n>0),求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義在R上的可導函數(shù)f(x),已知y=ef'(x)的圖象如圖,則y=f(x)的遞減區(qū)間是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.己知對任意非零實數(shù)x,不等式x2-6|x|+49≥a|x|恒成立.
(1)求a的取值范圍;
(2)設f(x)=|x|+|x+a|(x∈R)的最小值不小于2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|2a-x|(a∈R).
(1)當a=2時,解不等式f(x)>6-|3x-2|;
(2)若對?∈R,f(x)+x>5恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設a∈Z,且0<a<13,若532016+a能被13整除,則a=( 。
A.0B.1C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.觀察下列等式:32=52-42,52=132-122,72=252-242,92=412-402,…照此規(guī)律,第n個等式為(2n+1)2=(2n2+2n+1)2-(2n2+2n)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.如圖,第1個圖形是由正三角形“擴展”而來的,第2個圖形是由正方形“擴展”而來的,第3個圖形是由正五邊形“擴展”而來的,…,第n個圖形是由正n+2邊形“擴展”而來的(n∈N*).則在第n個圖形中共有(n+2)(n+3)個頂點.(用n表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.若不等式|x-m|<n(n>0)的解集為(-1,5),求不等式|x+n|>m的解集.

查看答案和解析>>

同步練習冊答案