設(shè)橢圓的左焦點(diǎn)為為橢圓上一點(diǎn),其橫坐標(biāo)為,則=(   )
A.B.C.D.
D
解:設(shè)點(diǎn)P與該橢圓左焦點(diǎn)的距離為d,
因?yàn)闄E圓的方程為
所以橢圓的左準(zhǔn)線的方程為x="-4/" 3 ,離心率e=/2 .
由橢圓的第二定義可得:e=點(diǎn)P與該橢圓左焦點(diǎn)的距離 點(diǎn)P與該橢圓左準(zhǔn)線的距離d,滿足 d=(+4/ 3 ) /2 ,
所以可得d=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是橢圓上的動(dòng)點(diǎn),F1,F2分別為其左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),則的取值范圍是            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點(diǎn)是
(1)求此橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn)P在此橢圓上,且有的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e,若橢圓上存在點(diǎn)P,使得,則該離心率e的取值范圍是__________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)在橢圓上,求點(diǎn)到直線的最大距離和最小距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn),過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存直線,滿足?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓有公共焦點(diǎn),且離心率的雙曲線的方程是
A.B.
C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角梯形ABMN中,∠NAB=90°,AN∥BM,AB=2,AN=,BM=,橢圓C以A,B為焦點(diǎn)且過點(diǎn)N.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓C方程;
(2)若點(diǎn)E滿足,問是否存在不平行AB的直線L與橢圓C交于P,Q兩點(diǎn),且|PE|=|QE|,若存在,求出直線L與AB夾角的范圍;若不存在,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

. (本小題滿分12分)
如圖,設(shè)拋物線C1:的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F2為焦點(diǎn),離心率的橢圓C2與拋物線C1在X軸上方的交點(diǎn)為P,延長(zhǎng)PF2交拋物線于點(diǎn)Q,M是拋物線上一動(dòng)點(diǎn),且M在P與Q之間運(yùn)動(dòng).
(I)當(dāng)m =1時(shí),求橢圓C2的方程;
(II)當(dāng)的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案