【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.

【答案】(1) (2)

【解析】試題分析:(1)求出集合B={x|x1},RA={x|x2x0},根據(jù)交集的定義求解;(2)分C=C兩種情況求解即可。

試題解析:

1A={x|2x0},B={x|y= }={x|x+10}={x|x1},

RA={x|x﹣2x0},

RAB={x|x0}

2)①當a2a+1時,C=,此時a﹣1滿足題意;

②當a2a+1時,C,由題意得 ,

解得﹣1a;

綜上,

∴實數(shù)a的取值范圍是。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某校高二年級共有800名學生參加2019年全國高中數(shù)學聯(lián)賽江蘇賽區(qū)初賽,為了解學生成績,現(xiàn)隨機抽取40名學生的成績(單位:分),并列成如下表所示的頻數(shù)分布表:

分組

頻數(shù)

⑴試估計該年級成績不低于90分的學生人數(shù);

⑵成績在的5名學生中有3名男生,2名女生,現(xiàn)從中選出2名學生參加訪談,求恰好選中一名男生一名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北京101中學校園內(nèi)有一個“少年湖”,湖的兩側(cè)有一個音樂教室和一個圖書館,如圖,若設(shè)音樂教室在A處,圖書館在B處,為測量A,B兩地之間的距離,某同學選定了與A,B不共線的C處,構(gòu)成△ABC,以下是測量的數(shù)據(jù)的不同方案:①測量∠A,AC,BC;②測量∠A,B,BC;③測量∠C,AC,BC;④測量∠AC,B. 其中一定能唯一確定A,B兩地之間的距離的所有方案的序號是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示.

(1)求的值;

(2)設(shè)的三個角、、所對的邊依次為、、,如果,且,試求的取值范圍;

(3)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a∈Z,已知定義在R上的函數(shù)f(x)=2x4+3x3﹣3x2﹣6x+a在區(qū)間(1,2)內(nèi)有一個零點x0 , g(x)為f(x)的導函數(shù).
(Ⅰ)求g(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m∈[1,x0)∪(x0 , 2],函數(shù)h(x)=g(x)(m﹣x0)﹣f(m),求證:h(m)h(x0)<0;
(Ⅲ)求證:存在大于0的常數(shù)A,使得對于任意的正整數(shù)p,q,且 ∈[1,x0)∪(x0 , 2],滿足| ﹣x0|≥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種零件按質(zhì)量標準分為1,2,3,4,5五個等級.現(xiàn)從一批該零件中隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:

(1)在抽取的20個零件中,等級為5的恰有2個,求

(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)海拔x m處的大氣壓強是 y Pa,yx 之間的函數(shù)關(guān)系式是 ycekx,其中c,k為常量,已知某地某天在海平面的大氣壓為1.01×105 Pa,1 000 m高空的大氣壓為0.90×105 Pa,求600 m高空的大氣壓強(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,越來越多的人參與了潛水這項活動.某潛水中心調(diào)查了100名男性與100女性下潛至距離水面5米時是否耳鳴,下圖為其等高條形圖:

①繪出列聯(lián)表;

②根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過0.005的前提下認為耳鳴與性別有關(guān)系?

附:,其中.

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進行研究,他們分別記錄了31日至35日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y()

23

25

30

26

16

(1)請根據(jù)32日至34日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

查看答案和解析>>

同步練習冊答案