設實數(shù)x,y滿足約束條件
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目標函數(shù)z=(a2+2b2)x+y的最大值為8,則2a+b的最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:由z=(a2+2b2)x+y得y=-(a2+2b2)x+z,
由圖象可知當y=-(a2+2b2)x+z,經(jīng)過點A時,目標函數(shù)的截距最大,此時z最大,
2x-y+2=0
8x-y-4=0
,解得
x=1
y=4
,即A(1,4),
則a2+2b2+4=8,
即a2+2b2=4,即
a2
4
+
b2
2
=1
,
設a=2sinθ,b=
2
cosθ,
則2a+b=4sinθ+
2
cosθ=3
2
sin(θ+α),其中α為參數(shù),
則當sin(θ+α)=-1時,2a+b有最小值為-3
2

故答案為:-3
2
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合以及三角換元法是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

畫出經(jīng)過PQR的正方體的截面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,O為坐標原點,已知向量
a
=(2,1),A(1,0),B(cosθ,t).
(1)若
a
AB
,且|
AB
|=
5
|
OB
|,求向量
OB
的坐標;
(2)若
a
AB
,求y=cos2θ-cosθ+t2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若y=f(x)(x∈R)是周期為2的偶函數(shù),且當0≤x≤1時,f(x)=x2-2x,則方程3f(x)-x=0的實根個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x)且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=
log7x(x>0)
-
1
x
(x<0)
,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-7,7]內(nèi)零點的個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=2xlnx,g(x)=-x2+ax-3,若存在x∈(0,+∞),使f(x)≤g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知函數(shù)f(x)定義域為(-2,2),g(x)=f(x+1)+f(3-2x),求g(x)的定義域;
(2)若f(-2x)+2f(2x)=3x-2,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,都有f′(x)≥0,則a=f(
16
3
),b=f(
17
3
),c=f(
23
3
)的大小關(guān)系是(  )
A、c<b<a
B、c<a<b
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,由x=0,x=e,y=0,y=e,y=lnx,y=ex六條曲線共同圍成的面積為
 

查看答案和解析>>

同步練習冊答案