【題目】已知函數(shù)(,為常數(shù)).
(1)當(dāng)時(shí),若方程有實(shí)根,求的最小值;
(2)設(shè),若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
【答案】(1) 最小值為0. (2)
【解析】
(1)當(dāng)時(shí),利用導(dǎo)數(shù)求得的最小值為,所以,故的最小值為.
(2)首先求得的解析式,利用二次求導(dǎo)的方法,結(jié)合在區(qū)間上是單調(diào)函數(shù),將分成和兩種情況進(jìn)行分類(lèi)討論,由此求得的取值范圍.
(1)當(dāng)時(shí),,
.
當(dāng)時(shí),,為減函數(shù);
當(dāng)時(shí),,為增函數(shù).
∴.
由,得,
又,∴.即的最小值為0.
(2)∵,∴.
設(shè),則,
可知在上為減函數(shù).
從而.
①當(dāng),即時(shí),,在區(qū)間上為增函數(shù),
∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立.
∴在區(qū)間上是減函數(shù),故滿(mǎn)足題意;
②當(dāng),即時(shí),設(shè)函數(shù)的唯一零點(diǎn)為,
則在上單調(diào)遞增,在上單調(diào)遞減.
又∵,∴,∴在上單調(diào)遞增,
∵,∴在上遞減,
這與在區(qū)間上是單調(diào)函數(shù)矛盾.
∴不合題意.
綜合①②得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐底面是直角梯形,點(diǎn)E是棱PC的中點(diǎn),,底面ABCD,.
(1)判斷BE與平面PAD是否平行,證明你的結(jié)論;
(2)證明:平面;
(3)求三棱錐的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為;直線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于,兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:, 過(guò)點(diǎn)的直線(xiàn):與橢圓交于M、N兩點(diǎn)(M點(diǎn)在N點(diǎn)的上方),與軸交于點(diǎn)E.
(1)當(dāng)且時(shí),求點(diǎn)M、N的坐標(biāo);
(2)當(dāng)時(shí),設(shè),,求證:為定值,并求出該值;
(3)當(dāng)時(shí),點(diǎn)D和點(diǎn)F關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),若△MNF的內(nèi)切圓面積等于,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠利用輻射對(duì)食品進(jìn)行滅菌消毒,現(xiàn)準(zhǔn)備在該廠附近建一職工宿舍,并對(duì)宿舍進(jìn)行防輻射處理,建房防輻射材料的選用與宿舍到工廠距離有關(guān).若建造宿舍的所有費(fèi)用p(萬(wàn)元)和宿舍與工廠的距離x(km)的關(guān)系為,若距離為1km時(shí),測(cè)算宿舍建造費(fèi)用為100萬(wàn)元.為了交通方便,工廠與宿舍之間還要修一條道路,已知購(gòu)置修路設(shè)備需5萬(wàn)元,鋪設(shè)路面每公里成本為6萬(wàn)元,設(shè)f(x)為建造宿舍與修路費(fèi)用之和.
(1)求f(x)的表達(dá)式
(2)宿舍應(yīng)建在離工廠多遠(yuǎn)處,可使總費(fèi)用f(x)最小并求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)的參數(shù)方程為(,為參數(shù)),曲線(xiàn)上的點(diǎn)對(duì)應(yīng)的參數(shù).在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.射線(xiàn)與曲線(xiàn)交于點(diǎn).
(1)求曲線(xiàn)的直角坐標(biāo)方程;
(2)若點(diǎn),在曲線(xiàn)上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率是,過(guò)點(diǎn)做斜率為的直線(xiàn),橢圓與直線(xiàn)交于兩點(diǎn),當(dāng)直線(xiàn)垂直于軸時(shí).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)變化時(shí),在軸上是否存在點(diǎn),使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}滿(mǎn)足:a3+a8=20,且a5是a2與a14的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足,求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S-ABCD中,四邊形ABCD菱形,,平面平面 ABCD, .E,F 分別是線(xiàn)段 SC,AB 上的一點(diǎn), .
(1)求證:平面SAD;
(2)求平面DEF與平面SBC所成銳二面角的正弦值.
查看答案和解析>>