14.函數(shù)y=loga(x-3)-2過的定點(diǎn)是(4,-2).

分析 根據(jù)對數(shù)函數(shù)的圖象恒過定點(diǎn)(1,0),求出該題的答案即可.

解答 解:當(dāng)x-3=1,即x=4時(shí),y=loga(x-3)-2=0-2=-2,
∴函數(shù)y=loga(x-3)-2的圖象恒過定點(diǎn)(4,-2),
故答案為:(4,-2).

點(diǎn)評 本題考查了對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=1,O1:(x-4)2+y2=4,動點(diǎn)P在直線x+$\sqrt{3}$y+b=0上,過P分別作圓O,O1的切線,切點(diǎn)分別為A,B,若滿足PB=2PA的點(diǎn)P有且只有兩個(gè),則實(shí)數(shù)b的取值范圍是(-4,$\frac{20}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\sqrt{x-2}$+$\frac{1}{ln(3-x)}$的定義域?yàn)椋?,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{1+x}{1-x}$.
(Ⅰ)判斷f(x)奇偶性并證明;
(Ⅱ)用單調(diào)性定義證明函數(shù)g(x)=$\frac{1+x}{1-x}$在函數(shù)f(x)定義域內(nèi)單調(diào)遞增,并判斷f(x)=log2$\frac{1+x}{1-x}$在定義域內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)已知等比數(shù)列{an}中,a1=-1,a4=64,求q與S4
(2)已知等差數(shù)列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,Sn=-15,求n及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知奇函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x}\\ 0\\{{x^2}+2x}\end{array}\begin{array}{l}{({x>0})}\\{({x=0})}\\{({x<0})}\end{array}}\right.$
(1)在直角坐標(biāo)系中畫出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.不等式|x-2|-|2x-1|>0的解集為(-1,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a$與$\overrightarrow b$的夾角為60°,則$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$上的投影為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若S3=13,an+1=2Sn+1,n∈N*,則符合Sn>a5的最小的n值為(  )
A.8B.7C.6D.5

查看答案和解析>>

同步練習(xí)冊答案