已知數(shù)列的前項(xiàng)和為,且.
(1)求的通項(xiàng)公式;
(2)設(shè)恰有5個(gè)元素,求實(shí)數(shù)的取值范圍.
(1);(2).
解析試題分析:(1)先將遞推式變形為,進(jìn)而判斷數(shù)列為等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式即可求出;(2)由(1)中,該數(shù)列的通項(xiàng)是由一個(gè)等差與一個(gè)等比數(shù)列的通項(xiàng)公式相乘,于是可用錯(cuò)位相減法求出,進(jìn)而得到,然后判斷數(shù)列的單調(diào)性,進(jìn)而根據(jù)集合恰有5個(gè)元素,確定的取值范圍即可.
(1)由已知得,其中
所以數(shù)列是公比為的等比數(shù)列,首項(xiàng)
,所以
由(1)知
所以
所以
因此,
所以,當(dāng)即,即
要使得集合有5個(gè)元素,實(shí)數(shù)的取值范圍為.
考點(diǎn):1.等比數(shù)列的通項(xiàng)公式;2.數(shù)列的前項(xiàng)和;3.數(shù)列的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的前項(xiàng)和為,數(shù)列是公比為的等比數(shù)列,是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知和均為給定的大于1的自然數(shù).設(shè)集合,集合.
(1)當(dāng),時(shí),用列舉法表示集合;
(2)設(shè),,,其中證明:若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列中,,前項(xiàng)的和是,且,.
(1)求出
(2)求數(shù)列的通項(xiàng)公式;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列滿足:,公比,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列和數(shù)列的通項(xiàng)和;
(2)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列{}的前n項(xiàng)和為,且.
⑴證明數(shù)列{}為等比數(shù)列
⑵求{}的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列的各項(xiàng)均滿足,,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,
求證:對(duì)于任意的正數(shù),總有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com