【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, 為等邊三角形, , 分別是, 的中點(diǎn), .
(Ⅰ)求證:平面平面;
(Ⅱ)求點(diǎn)到平面的距離.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .
【解析】試題分析:(Ⅰ)根據(jù)正三角形的性質(zhì)可得,由勾股定理可得,由線面垂直的判定定理可得平面,從而根據(jù)面面垂直的判定定理可得平面平面;(Ⅱ)根據(jù)平面,可得,結(jié)合,可得平面,故為三棱錐的高,根據(jù)平面幾何知識(shí)分別算出與的面積,由得, 可得點(diǎn)到平面的距離.
試題解析:(Ⅰ)由題意知,正的邊長(zhǎng)為, 點(diǎn)為的中點(diǎn),.
, .
在正方形中, 為的中點(diǎn),邊長(zhǎng)為,則.
在中, , .
又, 平面.
又平面, 平面 平面;
(Ⅱ)由題意得, , 為等邊三角形,則, .
平面, .
, 平面.
故為三棱錐的高.
.
又 是的中點(diǎn), .
在正方形中, ,則在中,滿足, 為直角三角形, .
.
設(shè)點(diǎn)到平面的距離為,由得, ,解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線是極坐標(biāo)方程式,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線是參數(shù)方程是(為參數(shù)).
(1)求曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點(diǎn),若直線與曲線交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖像與軸相交于點(diǎn)、(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),連接、.
(1)求線段的長(zhǎng);
(2)若平分,求的值;
(3)該函數(shù)圖象的對(duì)稱軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”!疤旄伞币浴凹住弊珠_(kāi)始,“地支”以“子”字開(kāi)始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃印⒁页、丙寅…癸酉,甲戌、乙亥、丙子…癸末,甲申、乙酉、丙戌…癸巳,…,共得?/span>個(gè)組成,周而復(fù)始,循環(huán)記錄。2014年是“干支紀(jì)年法”中的甲午年,那么2020年是“干支紀(jì)年法”中的()
A. 己亥年 B. 戊戌年 C. 辛丑年 D. 庚子年
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,學(xué)校升旗儀式上,主持人站在主席臺(tái)前沿D處,測(cè)得旗桿AB頂部的仰角為俯角最后一排學(xué)生C的俯角為最后一排學(xué)生C測(cè)得旗桿頂部的仰角為旗桿底部與學(xué)生在一個(gè)水平面上,并且不計(jì)學(xué)生身高.
(1)設(shè)米,試用和表示旗桿的高度AB(米);
(2)測(cè)得米,若國(guó)歌長(zhǎng)度約為50秒,國(guó)旗班升旗手應(yīng)以多大的速度勻速升旗才能是國(guó)旗到達(dá)旗桿頂點(diǎn)時(shí)師生的目光剛好停留在B處?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩圓的圓心分別為,P為一個(gè)動(dòng)點(diǎn),且直線的斜率之積為.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡M的方程;
(Ⅱ)是否存在過(guò)點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C、D,使得?若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正方形沿對(duì)角線折成直二面角,有如下四個(gè)結(jié)論:
①;
②是等邊三角形;
③與平面所成的角為;
④與所成的角為.
其中錯(cuò)誤的結(jié)論是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象過(guò)點(diǎn)P(1,2),且在處取得極值
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求函數(shù)在上的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com