5.已知直線l:x-y+2=0與圓C:x2+y2-2y-2m=0相離,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,0)B.(-$\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{4}$)D.(-$\frac{1}{2}$,-$\frac{1}{4}$)

分析 化圓的一般方程為標(biāo)準(zhǔn)方程,求出圓心坐標(biāo)和半徑,由圓心到直線的距離大于圓的半徑求得答案.

解答 解:由圓C:x2+y2-2y-2m=0,得x2+(y-1)2=2m+1,
∵直線l:x-y+2=0與圓C:x2+y2-2y-2m=0相離,
∴$\left\{\begin{array}{l}{2m+1>0}\\{\frac{|1×0-1×1+2|}{\sqrt{2}}>\sqrt{2m+1}}\end{array}\right.$,解得$-\frac{1}{2}<m<-\frac{1}{4}$.
∴實(shí)數(shù)m的取值范圍是$(-\frac{1}{2},-\frac{1}{4})$.
故選:D.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的應(yīng)用,考查了點(diǎn)到直線距離公式,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知點(diǎn)A(1,1),B(1,3),圓C:(x-a)2+(y+a-2)2=4上存在點(diǎn)P,使得PB2-PA2=32,則圓心橫坐標(biāo)a的取值范圍為[7,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若過點(diǎn)(-$\sqrt{5}$,0)的直線L與曲線y=$\sqrt{1-{x}^{2}}$有公共點(diǎn),則直線L的斜率的取值范圍為( 。
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,0]C.[0,$\sqrt{6}$]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,k),若$\overrightarrow{a}$與$\overrightarrow$共線,則|$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.5B.5$\sqrt{2}$C.2$\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,⊙O的兩條切線PA和PB相交于點(diǎn)P,與⊙O相切于A,B兩點(diǎn),C是⊙O上的一點(diǎn),若∠P=70°,則∠ACB=55°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.由下面樣本數(shù)據(jù)利用最小二乘法求出的線性回歸方程是$\widehat{y}$=0.7x+m,則實(shí)數(shù)m=0.35.
x3456
y2.5344.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)幾何體的三視圖為如圖所示的三個(gè)直角三角形,則該幾何體表面的直角三角形的個(gè)數(shù)為4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.多面體ABCDFE中,底面四邊形ABCD為矩形,EF∥AD,AE=FD,F(xiàn)G=GD,AD=2AB=2EF=2,且四邊形EADF的面積為$\frac{3\sqrt{3}}{4}$.
(1)判斷直線BF與平面ACG的關(guān)系,并說明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC與平面ACG形成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將方程組寫成矩陣形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案