分析 連接OA、OB,由已知的PA、PB與圓O分別相切于點A、B,根據切線的性質得到OA⊥AP,OB⊥PB,從而得到∠OAP=∠OBP=90°,然后由已知的∠P的度數,根據四邊形的內角和為360°,求出∠AOB的度數,最后根據同弧所對的圓周角等于它所對圓心角度數的一半即可得到∠ACB的度數.
解答 解:連接OA、OB,
∵PA、PB與圓O分別相切于點A、B,
∴OA⊥AP,OB⊥PB,
∴∠OAP=∠OBP=90°,又∠P=70°,
∴∠AOB=360°-90°-90°-70°=110°,
又∵∠ACB和∠AOB分別是$\widehat{AB}$所對的圓周角和圓心角,
∴∠ACB=$\frac{1}{2}$∠AOB=$\frac{1}{2}$×110°=55°.
故答案為:55°.
點評 此題考查了切線的性質,以及圓周角定理.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題,同時要求學生掌握同弧所對的圓周角等于所對圓心角的一半.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}-1}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{5}$ | D. | 9 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-$\frac{1}{2}$,+∞) | C. | (-∞,-$\frac{1}{4}$) | D. | (-$\frac{1}{2}$,-$\frac{1}{4}$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com