分析 由題意設(shè)|PC|:|CF|=1:t,由拋物線的焦半徑公式比例關(guān)系求得P點(diǎn)坐標(biāo),則S△PFB=(1+t)2$\sqrt{2}$,根據(jù)三角形的面積公式,列方程即可求得t的值.
解答 解:設(shè)拋物線E:y2=4x的焦點(diǎn)為F(1,0),準(zhǔn)線x=-1,設(shè)P(xP,yP),
設(shè)|PC|:|CF|=1:t,則t丨PC丨=丨CF丨,丨AP丨=丨PF丨=xP+1,
由AB∥x軸,則丨AP丨:丨FB丨=|PC|:|CF|=$\frac{1}{t}$,即$\frac{1+{x}_{P}}{7-1}$=$\frac{1}{t}$,
則xP=$\frac{6-t}{t}$,yP=2$\sqrt{\frac{6-t}{t}}$,
由|PC|:|CF|=1:t,則S△PBC:S△FBC=1:t,
∴S△PFB=(1+t)2$\sqrt{2}$,
∴$\frac{1}{2}$×丨FB丨×yP=(1+t)2$\sqrt{2}$,即$\frac{1}{2}$×6×2$\sqrt{\frac{6-t}{t}}$=(1+t)2$\sqrt{2}$,
整理得:2t3+4t2+11t-54=0,解得:t=2,
∴|PC|:|CF|=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查拋物線的性質(zhì),考查相似三角形的性質(zhì),考查數(shù)形結(jié)合思想,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com