分析 (1)由莖葉圖能求出乙學生的平均成績和方差.
(2)X的可能取值為0,1,2,3,分別求出相應的概率,由此能求出X的分布列和EX.
解答 解:(1)由莖葉圖得乙學生的平均成績?yōu)椋?br />$\overline{x}$=$\frac{1}{10}$(61+69+74+75+78+89+86+89+94)=80,
方差為:
S2=$\frac{1}{10}$[(-19)2+(-11)2+(-6)2+(-5)2+(-2)2+92+62+52+92+142]=96.6.
(2)X的可能取值為:
P(X=0)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P | $\frac{1}{12}$ | $\frac{5}{12}$ | $\frac{5}{12}$ | $\frac{1}{12}$ |
點評 本題考查概率的求法,考查離散型隨機變量的分布列及數(shù)學期望的求法,涉及到平均數(shù)、方差、離散型隨機變量的分布列及數(shù)學期望等知識點,考查推理論證能力、運算求解能力、數(shù)據(jù)處理能力,考查化歸與轉化思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 7 | B. | 6 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | (-∞,-1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8或9 | B. | 9或10 | C. | 10或11 | D. | 11或12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com