15.設(shè)非零向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,若存在m∈R,使得向量4$\overrightarrow{a}$-m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$的夾角也為θ,則cosθ的最小值是-1.

分析 由題意可得,當(dāng)θ=π時(shí),滿足題目條件,由此可得cosθ的最小值是-1.

解答 解:如圖,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OD}$=$\overrightarrow$,$\overrightarrow{OC}$=4$\overrightarrow{a}$,$\overrightarrow{OB}$=-m$\overrightarrow$,

且|4$\overrightarrow{a}$|>|-m$\overrightarrow$|,|$\overrightarrow{a}$|<|-m$\overrightarrow$|,
則有非零向量$\overrightarrow{a}$與$\overrightarrow$的夾角為π,向量4$\overrightarrow{a}$-m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$的夾角也為π,
此時(shí)cosθ的最小值是cosπ=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查數(shù)量積表示兩個(gè)向量的夾角,考查了數(shù)形結(jié)合的解題思想方法,考查了想象能力和理解能力,有一定難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.線段AD、BE分別時(shí)邊長(zhǎng)為2的等邊三角形ABC在邊BC、AC邊上的高,則$\overrightarrow{AD}$•$\overrightarrow{BE}$=(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知ω>0,函數(shù)f(x)=2sin(ωx-$\frac{π}{3}$)在($\frac{π}{2}$,π)上單調(diào)遞減,則ω的最大值是$\frac{11}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,圓C的方程為$\left\{\begin{array}{l}{x=1+\sqrt{2}cosθ}\\{y=1+\sqrt{2}sinθ}\end{array}\right.$ (θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ=m(m∈R).
(I)當(dāng)m=3時(shí),判斷直線l與C的位置關(guān)系;
(Ⅱ)當(dāng)C上有且只有一點(diǎn)到直線l的距離等于$\sqrt{2}$時(shí),求C上到直線l距離為2$\sqrt{2}$的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若函數(shù)f(x)同時(shí)滿足以下三個(gè)性質(zhì);①f(x)的最小正周期為π;②對(duì)任意的x∈R,都有f(x-$\frac{π}{4}$)=f(-x);③f(x)在($\frac{3π}{8}$,$\frac{π}{2}$)上是減函數(shù).則f(x)的解析式可能是(  )
A.f(x)=cos(x+$\frac{π}{8}$)B.f(x)=sin2x-cos2xC.f(x)=sinxcosxD.f(x)=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.2016年元旦來(lái)臨之際,某網(wǎng)站舉行了一次促銷答題活動(dòng),若在網(wǎng)站給出一道多項(xiàng)選擇題,答題者選出所有的正確選項(xiàng)的概率為m,此時(shí)送出50元優(yōu)惠券,選出一部分(沒(méi)有全部選出,但也沒(méi)有選出錯(cuò)誤項(xiàng))的概率為n,此時(shí)送出20元優(yōu)惠券,選出錯(cuò)誤選項(xiàng)(即包含錯(cuò)誤選項(xiàng))的概率為0.2,此時(shí)不送優(yōu)惠券,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為3$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若acosA=bsinA,且B>$\frac{π}{2}$,則sinA+sinC的最大值是( 。
A.$\sqrt{2}$B.$\frac{9}{8}$C.1D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖所示,在三角形ABC中,AD⊥BC,AD=1,BC=4,點(diǎn)E為AC的中點(diǎn),$\overrightarrow{DC}•\overrightarrow{BE}$=$\frac{15}{2}$,則AB的長(zhǎng)度為(  )
A.2B.$\frac{3}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.Sn為數(shù)列{an}的前n項(xiàng)和,Sn=2an-2(n∈N+
(1)求{an}的通項(xiàng)公式;
(2)若bn=3nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案