5.線段AD、BE分別時邊長為2的等邊三角形ABC在邊BC、AC邊上的高,則$\overrightarrow{AD}$•$\overrightarrow{BE}$=( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-$\frac{2\sqrt{3}}{2}$D.$\frac{3\sqrt{3}}{2}$

分析 建立平面直角坐標系,求出A,D,E的坐標,得到$\overrightarrow{AD}$、$\overrightarrow{BE}$的坐標,從而求出$\overrightarrow{AD}$•$\overrightarrow{BE}$的值即可.

解答 解:以B為原點,$\overrightarrow{BC}$為x軸的正方向建立坐標系,
如圖示:

等邊三角形的邊長是2,
故A(1,$\sqrt{3}$),D(1,0),E($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{AD}$=(0,-$\sqrt{3}$),$\overrightarrow{BE}$=($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),
∴$\overrightarrow{AD}$•$\overrightarrow{BE}$=0×$\frac{3}{2}$-$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=-$\frac{3}{2}$,
故選:A.

點評 本題考查了平面向量數(shù)量積的運算,考查數(shù)形結合思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.在區(qū)間[-2,1]上隨機選一個數(shù)x,使得函數(shù)f(x)=log2(1-x2)有意義的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某水稻品種的單株稻穗顆粒數(shù)X服從正態(tài)分布N(200,102),則P(X>190)=0.8413.
(附:若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,($\overrightarrow{a}$+$\overrightarrow$)(2$\overrightarrow{a}$-$\overrightarrow$)=-1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為135°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.為了參加2016年全市“五•四”文藝匯演,某高中從校文藝隊160名學生中抽取20名學生參加排練,現(xiàn)采用等距抽取的方法,將160名學生隨機地從1~160編號,按編號順序平均分成20組(1~8號,9~16號,…,153~160號),若第16組抽出的號碼為126號,則第1組中用抽簽的方法確定的號碼是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如果復數(shù)z滿足|z|=1且z2=a+bi,其中a,b∈R,則a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(2,sinθ),$\overrightarrow$=(1,cosθ),若$\overrightarrow{a}$∥$\overrightarrow$,則tanθ=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設集合A={1,2,3,5},B={2,3,6},則A∪B={1,2,3,5,6}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設非零向量$\overrightarrow{a}$,$\overrightarrow$的夾角為θ,若存在m∈R,使得向量4$\overrightarrow{a}$-m$\overrightarrow$與$\overrightarrow{a}$-m$\overrightarrow$的夾角也為θ,則cosθ的最小值是-1.

查看答案和解析>>

同步練習冊答案